Patents by Inventor Chao-Ting Lin

Chao-Ting Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11982866
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a stopping assembly. The fixed assembly has a main axis. The movable assembly is configured to connect an optical element, and the movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The stopping assembly is configured to limit the movement of the movable assembly relative to the fixed assembly within a range of motion.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: May 14, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Liang-Ting Ho, Chen-Er Hsu, Yi-Liang Chan, Fu-Lai Tseng, Fu-Yuan Wu, Chen-Chi Kuo, Ying-Jen Wang, Wei-Han Hsia, Yi-Hsin Tseng, Wen-Chang Lin, Chun-Chia Liao, Shou-Jen Liu, Chao-Chun Chang, Yi-Chieh Lin, Shang-Yu Hsu, Yu-Huai Liao, Shih-Wei Hung, Sin-Hong Lin, Kun-Shih Lin, Yu-Cheng Lin, Wen-Yen Huang, Wei-Jhe Shen, Chih-Shiang Wu, Sin-Jhong Song, Che-Hsiang Chiu, Sheng-Chang Lin
  • Publication number: 20240145412
    Abstract: A semiconductor device includes a logic circuit region having at least one core device and at least one input/output (I/O) device. The at least one core device has a first accumulative antenna ratio, and the at least one I/O device has a second accumulative antenna ratio. The first accumulative antenna ratio is greater than the second accumulative antenna ratio.
    Type: Application
    Filed: November 27, 2022
    Publication date: May 2, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Che Huang, Chao-Ting Chen, Jui-Fa Lu, Chi-Heng Lin
  • Publication number: 20240107682
    Abstract: An embodiment composite material for semiconductor package mount applications may include a first component including a tin-silver-copper alloy and a second component including a tin-bismuth alloy or a tin-indium alloy. The composite material may form a reflowed bonding material having a room temperature tensile strength in a range from 80 MPa to 100 MPa when subjected to a reflow process. The reflowed bonding material may include a weight fraction of bismuth that is in a range from approximately 4% to approximately 15%. The reflowed bonding material may an alloy that is solid solution strengthened by a presence of bismuth or indium that is dissolved within the reflowed bonding material or a solid solution phase that includes a minor component of bismuth dissolved within a major component of tin. In some embodiments, the reflowed bonding material may include intermetallic compounds formed as precipitates such as Ag3Sn and/or Cu6Sn5.
    Type: Application
    Filed: April 21, 2023
    Publication date: March 28, 2024
    Inventors: Chao-Wei Chiu, Chih-Chiang Tsao, Jen-Jui Yu, Hsuan-Ting Kuo, Hsiu-Jen Lin, Ching-Hua Hsieh
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Publication number: 20240082640
    Abstract: An exercise intensity assessing system includes a physiological information sensor, a signal transmitter connected with the physiological information sensor, a central control host connected with the signal transmitter, and a cloud database connected with the central control host. The physiological information sensor senses physiological information of an exerciser before and after the exerciser exercises. The physiological information is transmitted by the signal transmitter to the central control host, and transmitted by the central control host to the cloud database for being diagnosed and analyzed by a fitness instructor. The cloud database obtains a forecasted watt value corresponding to the physiological information, and obtains a resistance level of different fitness apparatuses according to the forecasted watt value.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 14, 2024
    Applicant: EHUNTSUN HEALTH TECHNOLOGY CO., LTD.
    Inventors: Chao-Chuan CHEN, Han-Pin HO, Jong-Shyan WANG, Yu-Ting LIN, Chi-Yao CHIANG, Yu-Liang LIN
  • Publication number: 20240082642
    Abstract: An intelligent exercise intensity assessing system includes an exercise testing machine, a physiological information sensor, a signal transmitter connected with the physiological information sensor, a central control host connected with the signal transmitter, and a cloud database connected with the central control host. The physiological information sensor senses physiological information of an exerciser before and after the exerciser operates the exercise testing machine. The physiological information is transmitted by the signal transmitter to the central control host, and transmitted by the central control host to the cloud database. The cloud database analyzes the physiological information to obtain a corresponding forecasted watt value, and obtains a resistance level of different fitness apparatuses according to the forecasted watt value.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 14, 2024
    Applicant: EHUNTSUN HEALTH TECHNOLOGY CO., LTD.
    Inventors: Chao-Chuan CHEN, Han-Pin HO, Jong-Shyan WANG, Yu-Ting LIN, Chi-Yao CHIANG, Yu-Liang LIN
  • Publication number: 20240071952
    Abstract: A method includes depositing solder paste over first contact pads of a first package component. Spring connectors of a second package component are aligned to the solder paste. The solder paste is reflowed to electrically and physically couple the spring connectors of the second package component to the first contact pads of the first package component. A device includes a first package component and a second package component electrically and physically coupled to the first package component by way of a plurality of spring coils. Each of the plurality of spring coils extends from the first package component to the second package component.
    Type: Application
    Filed: January 10, 2023
    Publication date: February 29, 2024
    Inventors: Chih-Chiang Tsao, Hsuan-Ting Kuo, Chao-Wei Chiu, Hsiu-Jen Lin, Ching-Hua Hsieh
  • Patent number: 11688533
    Abstract: A chip resistor structure includes a substrate; a pair of first electrodes disposed opposite to each other on a first surface of the substrate at a first interval; a resistance layer disposed between the pair of first electrodes on the first surface; a spacer layer made of a material having a composition different from that of the resistance layer, disposed over the pair of first electrodes; a protective layer overlying the resistance layer; and a plating layer electroplated onto the pair of first electrodes and the spacer layer, and having ends extending beyond the pair of first electrodes terminate at least over the spacer layer. The plating layer may be joined with or spaced from or climb up to the protective layer on or above the spacer layer.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: June 27, 2023
    Assignee: CYNTEC CO., LTD.
    Inventors: Hsiu-Yu Chang, Chao-Ting Lin
  • Publication number: 20230134039
    Abstract: A chip resistor structure includes a substrate; a pair of first electrodes disposed opposite to each other on a first surface of the substrate at a first interval; a resistance layer disposed between the pair of first electrodes on the first surface; a spacer layer made of a material having a composition different from that of the resistance layer, disposed over the pair of first electrodes; a protective layer overlying the resistance layer; and a plating layer electroplated onto the pair of first electrodes and the spacer layer, and having ends extending beyond the pair of first electrodes terminate at least over the spacer layer. The plating layer may be joined with or spaced from or climb up to the protective layer on or above the spacer layer.
    Type: Application
    Filed: November 2, 2021
    Publication date: May 4, 2023
    Inventors: Hsiu-Yu Chang, Chao-Ting Lin
  • Publication number: 20210393995
    Abstract: A positive-pressure protective wear has a protective body and an air supply. The protective body has a clothing and a headgear connected with the clothing. The air supply is connected with the protective body and inputs gas into the protective body to keep the protective body under positive pressure, and this can provide an effect of ventilation.
    Type: Application
    Filed: March 15, 2021
    Publication date: December 23, 2021
    Inventors: Yung Chi Lin, Chao-Ting Lin, Tzu-Ying Lin
  • Patent number: 5912620
    Abstract: A combined type intrusion and attack sensing device was a microwave oscillation and Doppler detect circuit an intrusion band-pass filter, an attack band-pass filter, two comparators, two alarm driving circuits, and a suspended object. The combined type intrusion and attack sensing device adopts the Doppler effect to sense an intrusion and employs a microwave antenna to transmit a signal in the microwave band within a predetermined range. The signal will be reflected by any object within above range or suspended object vibration, and the reflected wave will be received by the antenna. The reflected wave will be mixed with original signal to generate a difference-frequency signal. The difference-frequency signal is amplified by an intrusion band-pass filter or an attack band-pass filter. The amplified and filtered signal is sent to two comparator circuits for comparison with a reference signal to generate two driving signals to drive one of the two alarm-generating circuits.
    Type: Grant
    Filed: December 11, 1997
    Date of Patent: June 15, 1999
    Assignee: Lite-On Automotive Corp.
    Inventors: Chao-Ting Lin, Sheng-Hsiung Lin
  • Patent number: D413329
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: August 31, 1999
    Assignee: Lite-On Automotive Corporation
    Inventors: Chao-Ting Lin, Sheng Hsiung Lin
  • Patent number: D416022
    Type: Grant
    Filed: April 2, 1998
    Date of Patent: November 2, 1999
    Assignee: Lite-On Automotive Corp.
    Inventors: Chao-Ting Lin, Sheng Hsiung Lin