Patents by Inventor Chao-ting Wu

Chao-ting Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250110307
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Application
    Filed: December 12, 2024
    Publication date: April 3, 2025
    Inventors: Chao-Chang HU, Chih-Wei WENG, Chia-Che WU, Chien-Yu KAO, Hsiao-Hsin HU, He-Ling CHANG, Chao-Hsi WANG, Chen-Hsien FAN, Che-Wei CHANG, Mao-Gen JIAN, Sung-Mao TSAI, Wei-Jhe SHEN, Yung-Ping YANG, Sin-Hong LIN, Tzu-Yu CHANG, Sin-Jhong SONG, Shang-Yu HSU, Meng-Ting LIN, Shih-Wei HUNG, Yu-Huai LIAO, Mao-Kuo HSU, Hsueh-Ju LU, Ching-Chieh HUANG, Chih-Wen CHIANG, Yu-Chiao LO, Ying-Jen WANG, Shu-Shan CHEN, Che-Hsiang CHIU
  • Publication number: 20250037858
    Abstract: The present invention disclose a medical image-based system for predicting lesion classification and a method thereof. The system comprises a feature data extracting module for providing a raw feature data based on a medical image, and a predicting module for outputting a predicted class and a risk index according to the raw feature data. The predicting module comprises a classification unit for generating the predicted class and a prediction score corresponding thereto according to the raw feature data, and a risk evaluation unit for generating the risk index according to the prediction score. The system provides medical personnels a reference score and a risk index to determine progression of a certain disease.
    Type: Application
    Filed: February 1, 2024
    Publication date: January 30, 2025
    Inventors: YI-SHAN TSAI, YU-HSUAN LAI, CHENG-SHIH LAI, CHAO-YUN CHEN, MENG-JHEN WU, YI-CHUAN LIN, YI-TING CHIANG, PENG-HAO FANG, PO-TSUN KUO, YI-CHIH CHIU
  • Patent number: 12204163
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: February 5, 2024
    Date of Patent: January 21, 2025
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Publication number: 20240158839
    Abstract: This disclosure is generally directed to methods for obtaining sequence information at nucleotide resolution with spatial information directly from chromosome(s) in situ.
    Type: Application
    Filed: March 14, 2022
    Publication date: May 16, 2024
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Huy Quoc NGUYEN, Shyamtanu CHATTORAJ, Chao-ting WU, George M. CHURCH
  • Publication number: 20230340457
    Abstract: The technology described herein is directed to compositions, sets, and methods for analyzing, detecting, and/or visualizing target molecules. In one aspect, described herein are sets of readout molecules to determine the identity of at least one oligonucleotide tag hybridized to at least one target molecule. In another aspect, described herein are methods of detecting said oligonucleotide tags bound to at least one target molecules using said set of readout molecules.
    Type: Application
    Filed: November 24, 2020
    Publication date: October 26, 2023
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Huy Quoc NGUYEN, Shyamtanu CHATTORAJ, Chao-ting WU
  • Patent number: 11697839
    Abstract: The present invention relates to a method of identifying a target genomic nucleic acid sequence including hybridizing a set of probes to the target genomic nucleic acid sequence, wherein the set of probes has a unique associated barcode sequence for identification of the target genomic nucleic acid sequence, wherein each probe of the set includes (1) a complementary sequence complementary to a first strand of the target genomic nucleic acid sequence and (2) the associated barcode sequence or a portion of the associated barcode sequence, sequencing the associated barcode sequence from probes hybridized to the target genomic nucleic acid sequence using a fluorescence-based sequencing method, and identifying the target genomic nucleic acid sequence by the sequenced barcode sequence.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: July 11, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Evan R. Daugharthy, Son C. Nguyen, Chao-ting Wu, George M. Church
  • Publication number: 20230183788
    Abstract: Novel methods for making high resolution oligonucleotide paints are provided. Novel, high resolution oligonucleotide paints are also provided.
    Type: Application
    Filed: January 31, 2023
    Publication date: June 15, 2023
    Inventors: Chao-ting Wu, George M. Church, Benjamin Richard Williams
  • Publication number: 20220186301
    Abstract: The technology described herein is directed to methods, systems, and compositions for analyzing, detecting, and/or visualizing target molecules. Described herein are compositions and systems comprising oligonucleotide tags comprising barcoded cassettes. Also described herein are methods for analyzing target molecules, the method comprising contacting a sample with at least one oligonucleotide tag, contacting the sample with at least two readout molecules, and detecting the relative spatial order of the readout molecules.
    Type: Application
    Filed: July 30, 2020
    Publication date: June 16, 2022
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Huy Quoc NGUYEN, Shyamtanu CHATTORAJ, George M. CHURCH, Chao-ting WU
  • Publication number: 20210355530
    Abstract: Novel methods for making high resolution oligonucleotide paints are provided. Novel, high resolution oligonucleotide paints are also provided.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 18, 2021
    Inventors: Chao-ting Wu, George M. Church, Benjamin Richard Williams
  • Patent number: 11130990
    Abstract: Novel methods for making high resolution oligonucleotide paints are provided. Novel, high resolution oligonucleotide paints are also provided.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: September 28, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: Chao-ting Wu, George M. Church, Benjamin Richard Williams
  • Publication number: 20210269865
    Abstract: The present invention relates to a method of covalently attaching a chromosome within a cell to a matrix including modifying a plurality of nucleotides within the chromosome to include a matrix attachment moiety wherein the chromosome contacts the matrix, and attaching the matrix attachment moiety of the plurality of nucleotides to the matrix, thereby attaching the chromosome to the matrix.
    Type: Application
    Filed: April 27, 2021
    Publication date: September 2, 2021
    Inventors: Chao-ting Wu, Son Nguyen
  • Publication number: 20210254145
    Abstract: The present invention relates to a method of covalently attaching a chromosome within a cell to a matrix including modifying a plurality of nucleotides within the chromosome to include a matrix attachment moiety wherein the chromosome contacts the matrix, and attaching the matrix attachment moiety of the plurality of nucleotides to the matrix, thereby attaching the chromosome to the matrix.
    Type: Application
    Filed: April 27, 2021
    Publication date: August 19, 2021
    Inventors: Chao-ting Wu, Son Nguyen
  • Patent number: 11021741
    Abstract: The present invention relates to a method of covalently attaching a chromosome within a cell to a matrix including modifying a plurality of nucleotides within the chromosome to include a matrix attachment moiety wherein the chromosome contacts the matrix, and attaching the matrix attachment moiety of the plurality of nucleotides to the matrix, thereby attaching the chromosome to the matrix.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: June 1, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: Chao-ting Wu, Son Nguyen
  • Patent number: 10935646
    Abstract: A composite case of an airborne ultrasonic transducer for transmitting, receiving, or both of ultrasound in atmospheric environment at an ultrasound pressure level is disclosed. The case comprises a first case component and at least a second case component. The second case component is made of a material different from the first case component having an acoustic impedance smaller than that of said first case component and is structurally connected to the first case component for reducing said mechanical quality factor while maintaining said ultrasound pressure level. The connection between the first and second case components is by strong bonding at an interface between the components so that the strong bonding forms a composite structure for the case.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: March 2, 2021
    Assignee: SIMTRANS TECH INC
    Inventors: Wen-Jong Wu, Nai-Chang Wu, Yuan-Ping Liu, Wei-Ren Lai, Chao-Ting Wu
  • Publication number: 20210040548
    Abstract: The present invention relates to a method of identifying a target genomic nucleic acid sequence including hybridizing a set of probes to the target genomic nucleic acid sequence, wherein the set of probes has a unique associated barcode sequence for identification of the target genomic nucleic acid sequence, wherein each probe of the set includes (1) a complementary sequence complementary to a first strand of the target genomic nucleic acid sequence and (2) the associated barcode sequence or a portion of the associated barcode sequence, sequencing the associated barcode sequence from probes hybridized to the target genomic nucleic acid sequence using a fluorescence-based sequencing method, and identifying the target genomic nucleic acid sequence by the sequenced barcode sequence.
    Type: Application
    Filed: October 13, 2020
    Publication date: February 11, 2021
    Inventors: Evan R. Daugharthy, Son C. Nguyen, Chao-ting Wu, George M. Church
  • Patent number: 10844426
    Abstract: The present invention relates to a method of identifying a target genomic nucleic acid sequence including hybridizing a set of probes to the target genomic nucleic acid sequence, wherein the set of probes has a unique associated barcode sequence for identification of the target genomic nucleic acid sequence, wherein each probe of the set includes (1) a complementary sequence complementary to a first strand of the target genomic nucleic acid sequence and (2) the associated barcode sequence or a portion of the associated barcode sequence, sequencing the associated barcode sequence from probes hybridized to the target genomic nucleic acid sequence using a fluorescence-based sequencing method, and identifying the target genomic nucleic acid sequence by the sequenced barcode sequence.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: November 24, 2020
    Inventors: Evan R. Daugharthy, Son C. Nguyen, Chao-ting Wu, George M. Church
  • Publication number: 20200115742
    Abstract: The present invention relates to methods of providing sequence specificity to in situ genome imaging using triplex forming oligopaints.
    Type: Application
    Filed: March 30, 2018
    Publication date: April 16, 2020
    Inventors: Chao-ting Wu, Kwasi Agbleke, Karen M. Vasquez
  • Publication number: 20200102591
    Abstract: The present invention relates to methods of providing sequence specificity to in situ genome imaging at the level of the electron microscope (EM).
    Type: Application
    Filed: March 30, 2018
    Publication date: April 2, 2020
    Inventor: Chao-ting Wu
  • Patent number: 10501779
    Abstract: Novel methods and compositions for identifying one or more factors associated with a nucleic acid sequence (e.g., DNA and/or RNA) of interest are provided.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: December 10, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Chao-ting Wu, Brian Beliveau
  • Patent number: 10443092
    Abstract: The present invention relates to methods of elongating chromosomes. Embodiments of the present disclosure are directed to methods of elongating DNA by immobilizing or attaching the DNA to a substrate. According to one aspect, naturally occurring DNA includes a nucleic acid and one or more factors bound thereto, and may be referred to herein as “starting DNA”.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: October 15, 2019
    Assignee: President and Fellows of Harvard College
    Inventor: Chao-ting Wu