Patents by Inventor CHAO-WEN CHIANG

CHAO-WEN CHIANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240151935
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 8, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240151932
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 28, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240152029
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: November 2, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240155234
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 27, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240151936
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 27, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240142749
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a first movable assembly and a first driving assembly. The first movable assembly is configured to connect a first optical element, and the first movable assembly is movable relative to the fixed assembly. The first driving assembly is configured to drive the first movable assembly to move relative to the fixed assembly in a first dimension.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Inventors: Chao-Chang HU, Chen-Hsien FAN, Chih-Wen CHIANG, Chien-Yu KAO
  • Publication number: 20240128635
    Abstract: Sensor packages and manufacturing methods thereof are disclosed. One of the sensor packages includes a semiconductor chip and a redistribution layer structure. The semiconductor chip has a sensing surface. The redistribution layer structure is arranged to form an antenna transmitter structure aside the semiconductor chip and an antenna receiver structure over the sensing surface of the semiconductor chip.
    Type: Application
    Filed: December 24, 2023
    Publication date: April 18, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Ping Chiang, Chao-Wen Shih, Shou-Zen Chang, Albert Wan, Yu-Sheng Hsieh
  • Publication number: 20240111125
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a first movable assembly and a first driving assembly. The first movable assembly is configured to connect a first optical element, and the first movable assembly is movable relative to the fixed assembly. The first driving assembly is configured to drive the first movable assembly to move relative to the fixed assembly in a first dimension.
    Type: Application
    Filed: October 5, 2023
    Publication date: April 4, 2024
    Inventors: Chao-Chang HU, Chen-Hsien FAN, Chih-Wen CHIANG, Chien-Yu KAO
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 9614395
    Abstract: A wireless charging system includes a wireless charging device and a power-consuming device installed in a charging area. The wireless charging device has a signal conversion module connected to a controller, a transmitter antenna and a power input terminal. The power-consuming device has a receiver coil connected to a rectifier and outputting generated power through a power output terminal. Before or when the wireless charging device charges the power-consuming device, the controller of the wireless charging device can detect a power consumption status, voltage and current information and phase difference information of the transmitter antenna to instantly determine if any foreign metal object enters the charging area, thereby preventing high temperature generated by the foreign metal object from causing equipment damage and danger and enhancing wireless charging safety.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: April 4, 2017
    Assignee: Automotive Research & Testing Center
    Inventors: Chao-Wen Chiang, Yu-Chuan Wang
  • Patent number: 9419469
    Abstract: A control method for a wireless charging system has steps of performing impedance matching on an antenna of the wireless charging system; tracing an optimal frequency point by sending a sensing signal with a default transmission frequency, and calculating a transmission efficiency of the sensing signal; determining whether the transmission efficiency meets a transmission requirement. When the transmission efficiency does not meet the transmission requirement, repeats the previous steps with another default transmission frequency until the transmission efficiency meeting the transmission requirement. When the transmission efficiency meeting the transmission requirement, the default transmission frequency is defined as the optimal frequency point for charging.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: August 16, 2016
    Assignee: AUTOMOTIVE RESEARCH & TESTING CENTER
    Inventors: Chao-Wen Chiang, Chou-Yu Hsieh
  • Publication number: 20160190852
    Abstract: A wireless charging system includes a wireless charging device and a power-consuming device installed in a charging area. The wireless charging device has a signal conversion module connected to a controller, a transmitter antenna and a power input terminal. The power-consuming device has a receiver coil connected to a rectifier and outputting generated power through a power output terminal. Before or when the wireless charging device charges the power-consuming device, the controller of the wireless charging device can detect a power consumption status, voltage and current information and phase difference information of the transmitter antenna to instantly determine if any foreign metal object enters the charging area, thereby preventing high temperature generated by the foreign metal object from causing equipment damage and danger and enhancing wireless charging safety.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 30, 2016
    Applicant: AUTOMOTIVE RESEARCH & TESTING CENTER
    Inventors: Chao-Wen CHIANG, Yu-Chuan WANG
  • Patent number: 9142348
    Abstract: An antenna with a concentrated magnetic field has a main coil and at least one pair of auxiliary coils. Each of the main coil and each auxiliary coil has at least one coil conductor. Each one of the at least one coil conductor has a virtual reference plane. The at least one pair of auxiliary coils are mounted around the main coil and an included angle is formed between the virtual reference plane of each coil conductor of each auxiliary coil and that of each coil conductor of the main coil. Lines of magnetic field generated by each coil conductor of each auxiliary coil concentrate the lines of magnetic field of the main coil to orient to a corresponding virtual reference plane of the main coil, thereby solving the magnetic leakage and EMI easily occurring outside the zone of active transmission for conventional coils using electromagnetic induction.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: September 22, 2015
    Assignee: AUTOMOTIVE RESEARCH & TESTING CENTER
    Inventor: Chao-Wen Chiang
  • Publication number: 20150180265
    Abstract: A control method for a wireless charging system has steps of performing impedance matching on an antenna of the wireless charging system; tracing an optimal frequency point by sending a sensing signal with a default transmission frequency, and calculating a transmission efficiency of the sensing signal; determining whether the transmission efficiency meets a transmission requirement. When the transmission efficiency does not meet the transmission requirement, repeats the previous steps with another default transmission frequency until the transmission efficiency meeting the transmission requirement. When the transmission efficiency meeting the transmission requirement, the default transmission frequency is defined as the optimal frequency point for charging.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 25, 2015
    Applicant: AUTOMOTIVE RESEARCH & TESTING CENTER
    Inventors: Chao-Wen CHIANG, Chou-Yu HSIEH
  • Publication number: 20140176274
    Abstract: An antenna with a concentrated magnetic field has a main coil and at least one pair of auxiliary coils. Each of the main coil and each auxiliary coil has at least one coil conductor. Each one of the at least one coil conductor has a virtual reference plane. The at least one pair of auxiliary coils are mounted around the main coil and an included angle is formed between the virtual reference plane of each coil conductor of each auxiliary coil and that of each coil conductor of the main coil. Lines of magnetic field generated by each coil conductor of each auxiliary coil concentrate the lines of magnetic field of the main coil to orient to a corresponding virtual reference plane of the main coil, thereby solving the magnetic leakage and EMI easily occurring outside the zone of active transmission for conventional coils using electromagnetic induction.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: AUTOMOTIVE RESEARCH & TESTING CENTER
    Inventor: CHAO-WEN CHIANG