Patents by Inventor Chao-Yuan Su

Chao-Yuan Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9691749
    Abstract: A semiconductor structure less affected by stress and a method for forming the same are provided. The semiconductor structure includes a semiconductor chip. Stress-sensitive circuits are substantially excluded out of an exclusion zone to reduce the effects of the stress to the stress-sensitive circuits. The stress-sensitive circuits include analog circuits. The exclusion zone preferably includes corner regions of the semiconductor chip, wherein the corner regions preferably have a diagonal length of less than about one percent of the diagonal length of the semiconductor chip. The stress-sensitive analog circuits preferably include devices having channel lengths less than about five times the minimum channel length.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: June 27, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Yuan Su, Chung-Yi Lin
  • Publication number: 20150115362
    Abstract: A lateral diffused N-type metal oxide semiconductor device includes a semiconductor substrate, an epi-layer on the semiconductor substrate, a patterned isolation layer on the epi-layer, a N-type double diffused drain (NDDD) region in a first active region of the patterned isolation layer, a N+ heavily doped drain region disposed in the NDDD region, a P-body diffused region disposed in a second active region of the patterned isolation layer, a neighboring pair of a N+ heavily doped source region and a P+ heavily doped source region disposed in the P-body diffused region, a first gate structure disposed above a channel region of the patterned isolation layer and a second gate structure disposed above the second active region. The second gate structure and the first gate structure are spaced at a predetermined distance. A making method of the NDDD region includes using an ion implant and an epitaxy layer doping.
    Type: Application
    Filed: June 13, 2014
    Publication date: April 30, 2015
    Inventors: Chao-Yuan Su, Ching-Yi Wu, Hung-Bin Chen, Chun-Yen Chang
  • Publication number: 20150115361
    Abstract: A lateral diffused N-type metal oxide semiconductor device includes a semiconductor substrate, an epi-layer on the semiconductor substrate, a patterned isolation layer on the epi-layer, a N-type double diffused drain (NDDD) region in a first active region of the patterned isolation layer, a N+ heavily doped drain region disposed in the NDDD region, a P-body diffused region disposed in a second active region of the patterned isolation layer, a neighboring pair of a N+ heavily doped source region and a P+ heavily doped source region disposed in the P-body diffused region, a first gate structure disposed above a channel region of the patterned isolation layer and a second gate structure disposed above the second active region. The second gate structure and the first gate structure are spaced at a predetermined distance.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Applicants: Himax Technologies Limited, National Chiao Tung University, Himax Analogic, Inc.
    Inventors: Chao-Yuan Su, Ching-Yi Wu, Hung-Bin Chen, Chun-Yen Chang
  • Publication number: 20140346644
    Abstract: A semiconductor structure less affected by stress and a method for forming the same are provided. The semiconductor structure includes a semiconductor chip. Stress-sensitive circuits are substantially excluded out of an exclusion zone to reduce the effects of the stress to the stress-sensitive circuits. The stress-sensitive circuits include analog circuits. The exclusion zone preferably includes corner regions of the semiconductor chip, wherein the corner regions preferably have a diagonal length of less than about one percent of the diagonal length of the semiconductor chip. The stress-sensitive analog circuits preferably include devices having channel lengths less than about five times the minimum channel length.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Inventors: Chao-Yuan Su, Chung-Yi Lin
  • Patent number: 8829653
    Abstract: A semiconductor structure less affected by stress and a method for forming the same are provided. The semiconductor structure includes a semiconductor chip. Stress-sensitive circuits are substantially excluded out of an exclusion zone to reduce the effects of the stress to the stress-sensitive circuits. The stress-sensitive circuits include analog circuits. The exclusion zone preferably includes corner regions of the semiconductor chip, wherein the corner regions preferably have a diagonal length of less than about one percent of the diagonal length of the semiconductor chip. The stress-sensitive analog circuits preferably include devices having channel lengths less than about five times the minimum channel length.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: September 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Yuan Su, Chung-Yi Lin
  • Publication number: 20140087492
    Abstract: A semiconductor structure less affected by stress and a method for forming the same are provided. The semiconductor structure includes a semiconductor chip. Stress-sensitive circuits are substantially excluded out of an exclusion zone to reduce the effects of the stress to the stress-sensitive circuits. The stress-sensitive circuits include analog circuits. The exclusion zone preferably includes corner regions of the semiconductor chip, wherein the corner regions preferably have a diagonal length of less than about one percent of the diagonal length of the semiconductor chip. The stress-sensitive analog circuits preferably include devices having channel lengths less than about five times the minimum channel length.
    Type: Application
    Filed: December 4, 2013
    Publication date: March 27, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chao-Yuan Su, Chung-Yi Lin
  • Patent number: 8629563
    Abstract: Integrated circuit structures and methods are provided. According to an embodiment, a circuit structure includes a die and an anisotropic conducting film (ACF). The die comprises a through via, and the through via protrudes from a surface of the die. A cross-sectional area of the through via in the surface of the die is equal to a cross-sectional area of a protruding portion of the through via in a plane parallel to the surface of the die. The ACF adjoins the surface of the die, and the protruding portion of the through via penetrates the ACF.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chao-Yuan Su
  • Patent number: 8624346
    Abstract: A semiconductor structure less affected by stress and a method for forming the same are provided. The semiconductor structure includes a semiconductor chip. Stress-sensitive circuits are substantially excluded out of an exclusion zone to reduce the effects of the stress to the stress-sensitive circuits. The stress-sensitive circuits include analog circuits. The exclusion zone preferably includes corner regions of the semiconductor chip, wherein the corner regions preferably have a diagonal length of less than about one percent of the diagonal length of the semiconductor chip. The stress-sensitive analog circuits preferably include devices having channel lengths less than about five times the minimum channel length.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: January 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Yuan Su, Chung-Yi Lin
  • Patent number: 8497584
    Abstract: A new method is provided for the creation of a solder bump. Conventional methods are initially followed, creating a patterned layer of Under Bump Metal over the surface of a contact pad. A layer of photoresist is next deposited, this layer of photoresist is patterned and developed creating a resist mask having a T-shape opening aligned with the contact pad. This T-shaped opening is filled with a solder compound, creating a T-shaped layer of solder compound on the surface of the layer of UBM. The layer of photoresist is removed, exposing the created T-shaped layer of solder compound, further exposing the layer of UBM. The layer of UBM is etched using the T-shaped layer of solder compound as a mask. Reflow of the solder compound results in creating a solder ball.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: July 30, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yen-Ming Chen, Chia-Fu Lin, Shun-Liang Hsu, Kai-Ming Ching, Hsin-Hui Lee, Chao-Yuan Su, Li-Chih Chen
  • Publication number: 20120146238
    Abstract: Integrated circuit structures and methods are provided. According to an embodiment, a circuit structure includes a die and an anisotropic conducting film (ACF). The die comprises a through via, and the through via protrudes from a surface of the die. A cross-sectional area of the through via in the surface of the die is equal to a cross-sectional area of a protruding portion of the through via in a plane parallel to the surface of the die. The ACF adjoins the surface of the die, and the protruding portion of the through via penetrates the ACF.
    Type: Application
    Filed: February 8, 2012
    Publication date: June 14, 2012
    Inventor: Chao-Yuan Su
  • Patent number: 8124458
    Abstract: An integrated circuit structure is provided. The integrated circuit structure includes a die and an anisotropic conducing film (ACF) adjoining the back surface of the die. The die includes a front surface; a back surface on an opposite side of the die than the front surface; and a through-silicon via (TSV) exposed through the back surface of the die.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: February 28, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chao-Yuan Su
  • Patent number: 7906425
    Abstract: A process including providing a semiconductor device including a bond pad, and an under bump metallurgy overlying the bond pad. Forming a solder structure over the under bump metallurgy, and wherein the solder structure includes an outer layer including tin oxide. Producing a plasma from at least one of CF4 and SF6, and exposing the solder structure to the plasma. Heating the solder structure and cooling the same to provide a solder bump on the semiconductor device.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: March 15, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Yuan Su, Chia-Fu Lin, Hsin-Hui Lee, Yen-Ming Chen, Kai-Ming Ching, Li-Chih Chen, Wen-Chang Kuo, Yue-Ying Jian
  • Patent number: 7892962
    Abstract: A wafer-level chip-scale packaging feature for a semiconductor device is disclosed which has a substrate, a plurality of nail-shaped conducting posts extending from a surface of the substrate, and a plurality of solder balls, where each of the solder balls is connected to one of the nail-shaped conducting posts. When a different-sized solder ball is desired for use, the device can be re-processed by only removing and replacing the cross-members of the nail-shaped conducting posts, which cuts down on the re-processing expense.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: February 22, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chao-Yuan Su
  • Publication number: 20110014749
    Abstract: An integrated circuit structure is provided. The integrated circuit structure includes a die and an anisotropic conducing film (ACF) adjoining the back surface of the die. The die includes a front surface; a back surface on an opposite side of the die than the front surface; and a through-silicon via (TSV) exposed through the back surface of the die.
    Type: Application
    Filed: September 16, 2010
    Publication date: January 20, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chao-Yuan Su
  • Patent number: 7825517
    Abstract: An integrated circuit structure is provided. The integrated circuit structure includes a die and an anisotropic conducing film (ACF) adjoining the back surface of the die. The die includes a front surface; a back surface on an opposite side of the die than the front surface; and a through-silicon via (TSV) exposed through the back surface of the die.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: November 2, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chao-Yuan Su
  • Patent number: 7719076
    Abstract: A HV MOS transistor device having a substrate, a gate, a source, a drain, a first ion well of a first conductive type disposed in the substrate, and a plurality of field plates disposed on the substrate is disclosed. The HV MOS transistor device further has a first doped region of a second conductive type positioned in the first ion well. Therefore, a first interface and a second interface between the first ion well and the first doped region are formed, and the first interface and the second interface are respectively positioned near the drain and the source. In addition, the first interface is positioned under a respective field plate to produce a smooth field distribution and to increase the breakdown voltage of the HV transistor device.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: May 18, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Shih-Ming Shu, Chih-Jen Huang, Tun-Jen Cheng, Chao-Yuan Su
  • Patent number: 7709908
    Abstract: A high-voltage transistor device has a substrate, an isolation structure, a source, a gate, a drain, a plurality of doped regions, a plurality of ion wells, and a first dielectric layer disposed on the substrate. The high-voltage transistor device further has a first conductive layer and a plurality of first field plate rings. The first conductive layer is electrically connected to the drain and at least one of the first field plate rings.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: May 4, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Chao-Yuan Su, Wei-Lun Hsu, Ching-Ming Lee, Chih-Jen Huang, Te-Yuan Wu, Chun-Hsiung Peng
  • Publication number: 20090111252
    Abstract: A method of fabricating a deep well region of a high voltage device is provided. The method includes designating a deep well region that includes a designated highly doped region and a designed scarcely doped region in a substrate. A mask layer, which covers a periphery of the designated deep well region, is formed over the substrate, wherein the mask layer includes a plurality of shielding parts to cover a portion of the designated scarcely doped region. Using the mask layer as an implantation mask, an ion implantation process is performed to implant dopants into the substrate exposed by the mask and to form a plurality of undoped regions in the designated scarcely doped region covered by the shielding parts. The dopants in the designated scarcely doped region are then induced to diffuse to the undoped regions.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 30, 2009
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Jen Huang, Ching-Ming Lee, Wei-Lun Hsu, Chao-Yuan Su, Chun-Hsiung Peng
  • Publication number: 20090057896
    Abstract: A wafer-level chip-scale packaging feature for a semiconductor device is disclosed which has a substrate, a plurality of nail-shaped conducting posts extending from a surface of the substrate, and a plurality of solder balls, where each of the solder balls is connected to one of the nail-shaped conducting posts. When a different-sized solder ball is desired for use, the device can be re-processed by only removing and replacing the cross-members of the nail-shaped conducting posts, which cuts down on the re-processing expense.
    Type: Application
    Filed: September 5, 2007
    Publication date: March 5, 2009
    Inventor: Chao-Yuan Su
  • Publication number: 20090039425
    Abstract: A HV MOS transistor device having a substrate, a gate, a source, a drain, a first ion well of a first conductive type disposed in the substrate, and a plurality of field plates disposed on the substrate is disclosed. The HV MOS transistor device further has a first doped region of a second conductive type positioned in the first ion well. Therefore, a first interface and a second interface between the first ion well and the first doped region are formed, and the first interface and the second interface are respectively positioned near the drain and the source. In addition, the first interface is positioned under a respective field plate to produce a smooth field distribution and to increase the breakdown voltage of the HV transistor device.
    Type: Application
    Filed: August 10, 2007
    Publication date: February 12, 2009
    Inventors: Shih-Ming Shu, Chih-Jen Huang, Tun-Jen Cheng, Chao-Yuan Su