Patents by Inventor Chaoneng DAI

Chaoneng DAI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11926885
    Abstract: The present disclosure provides a high-plasticity rapidly-degradable Mg—Li—Gd—Ni alloy, including the following chemical elements by mass percentage: 1.0-10.0% of Gd, 0.2-2.0% of Ni, 5.5-10% of Li, and the rest of Mg and inevitable impurities. The impurities have a total content less than or equal to 0.3%. The present disclosure further provides a preparation method of the high-plasticity rapidly-degradable Mg—Li—Gd—Ni alloy. The high-plasticity rapidly-degradable Mg—Li—Gd—Ni alloy provided by the present disclosure constructs an ?-Mg+?-Li dual-phase matrix structure by introducing ?-Li with a body-centered cubic (BCC) structure with relatively more slip systems to improve plasticity of the alloy, then adds a certain amount of Gd element to weaken texture and promote non-basal plane slip, and further improves plasticity. In addition, by introducing the high-potential Ni-containing LPSO phase, a large potential difference with ?-Mg and ?-Li is formed to increase the degradation performance.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: March 12, 2024
    Assignee: Chongqing University
    Inventors: Jingfeng Wang, Jie Ren, Kai Ma, Chaoneng Dai
  • Publication number: 20230235430
    Abstract: The present disclosure provides a high-plasticity rapidly-degradable Mg-Li-Gd-Ni alloy, including the following chemical elements by mass percentage: 1.0-10.0% of Gd, 0.2-2.0% of Ni, 5.5-10% of Li, and the rest of Mg and inevitable impurities. The impurities have a total content less than or equal to 0.3%. The present disclosure further provides a preparation method of the high-plasticity rapidly-degradable Mg-Li-Gd-Ni alloy. The high-plasticity rapidly-degradable Mg-Li-Gd-Ni alloy provided by the present disclosure constructs an ?-Mg+?-Li dual-phase matrix structure by introducing ?-Li with a body-centered cubic (BCC) structure with relatively more slip systems to improve plasticity of the alloy, then adds a certain amount of Gd element to weaken texture and promote non-basal plane slip, and further improves plasticity. In addition, by introducing the high-potential Ni-containing LPSO phase, a large potential difference with ?-Mg and ?-Li is formed to increase the degradation performance.
    Type: Application
    Filed: June 9, 2022
    Publication date: July 27, 2023
    Applicant: Chongqing University
    Inventors: Jingfeng WANG, Jie REN, Kai MA, Chaoneng DAI
  • Publication number: 20230090533
    Abstract: A 3DP preparation process of a high-strength rapid-dissolving magnesium alloy for an underground temporary plugging tool is disclosed by the present disclosure, comprising the following steps: 1) evenly mixing ingredients of material components; 2) importing the shape of a product needing to be printed into a computer control system, and printing alloy powder and glue in a 3D printer in an alternate spraying molding mode to obtain a blank with the needed shape; 3) drying the blank obtained in the step 2) and then carrying out degreasing and sintering in a protective atmosphere or vacuum; and 4) sintering the blank obtained in the step 3) at a high temperature of 570° C.-680° C. in the protective atmosphere or vacuum and then cooling to a room temperature.
    Type: Application
    Filed: June 9, 2022
    Publication date: March 23, 2023
    Applicant: Chongqing University
    Inventors: Jingfeng WANG, Chen SU, Kai MA, Hongyun LI, Chaoneng DAI, Jinxing WANG