Patents by Inventor Chao-Wei Wang

Chao-Wei Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142748
    Abstract: An optical system is provided. The optical system is used for disposing on an electronic device. The optical system includes a movable portion, a fixed portion, a first driving assembly, and a support module. The movable portion is used for connecting to an optical module. The fixed portion is affixed on the electronic device, and the movable portion is movable relative to the fixed portion. The first driving assembly is used for driving the movable portion to move relative to the fixed portion. The movable portion is movably connected to the fixed portion through the support module.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Inventors: Ying-Jen WANG, Ya-Hsiu WU, Chen-Chi KUO, Chao-Chang HU, Yi-Ho CHEN, Che-Wei CHANG, Ko-Lun CHAO, Sin-Jhong SONG
  • Publication number: 20240145919
    Abstract: An antenna module includes a first metal plate and a frame body. The frame body surrounds the first metal plate. The frame body includes a first antenna radiator, a second antenna radiator, a third antenna radiator, a first breakpoint and a second breakpoint. The first antenna radiator includes a first feeding end and excites a first frequency band. The second antenna radiator includes a second feeding end and excites a second frequency band. The third antenna radiator includes a third feeding end and excites a third frequency band. The first breakpoint is located between the first antenna radiator and the second antenna radiator. The second breakpoint is located between the second antenna radiator and the third antenna radiator. An electronic device including the above-mentioned antenna module is also provided.
    Type: Application
    Filed: September 6, 2023
    Publication date: May 2, 2024
    Applicant: PEGATRON CORPORATION
    Inventors: Chien-Yi Wu, Shih-Keng Huang, Chao-Hsu Wu, Chih-Wei Liao, Sheng-Chin Hsu, Hao-Hsiang Yang, Tse-Hsuan Wang
  • Patent number: 11968817
    Abstract: A semiconductor device includes a fin structure. A source/drain region is formed on the fin structure. A first gate structure is disposed over the fin structure. A source/drain contact is disposed over the source/drain region. The source/drain contact has a protruding segment that protrudes at least partially over the first gate structure. The source/drain contact electrically couples together the source/drain region and the first gate structure.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jui-Lin Chen, Chao-Yuan Chang, Ping-Wei Wang, Fu-Kai Yang, Ting Fang, I-Wen Wu, Shih-Hao Lin
  • Patent number: 11933809
    Abstract: The present application discloses an inertial sensor comprising a proof mass, an anchor, a flexible member and several sensing electrodes. The anchor is positioned on one side of the sensing, mass block in a first axis. The flexible member is connected to the anchor point and extends along the first axis towards the proof mass to connect the proof mass, in which the several sensing electrodes are provided. In this way, the present application can effectively solve the problems of high difficulty in the production and assembly of inertial sensors and poor product reliability thereof.
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: March 19, 2024
    Assignee: SENSORTEK TECHNOLOGY CORP.
    Inventors: Shih-Wei Lee, Chia-Hao Lin, Shih-Hsiung Tseng, Kuan-Ju Tseng, Chao-Shiun Wang
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Publication number: 20240079758
    Abstract: An electronic device includes a metal back cover, a metal frame, and a first, second, third, and fourth radiators. The metal frame includes a discrete part and two connection parts. The connection parts are located by two sides of the discrete part, separated from the discrete part, and connected to the metal back cover. A U-shaped slot is formed between the discrete part and the metal back cover and between the discrete part and the connection parts. The first radiator is separated from the discrete part and includes a feed end. The second, third, and fourth radiators are connected to the discrete part and the metal back cover. The third radiator is located between the first and second radiators. The first radiator is located between the third and fourth radiators. The discrete part and the first, second, third, and fourth radiators form an antenna module together.
    Type: Application
    Filed: August 2, 2023
    Publication date: March 7, 2024
    Applicant: PEGATRON CORPORATION
    Inventors: Chien-Yi Wu, Chao-Hsu Wu, Chih-Wei Liao, Hau Yuen Tan, Shih-Keng Huang, Wen-Hgin Chuang, Lin-Hsu Chiang, Chang-Hua Wu, Han-Wei Wang, Chun-Jung Hu
  • Patent number: 11921307
    Abstract: The present disclosure provides an optical element driving mechanism, which includes a movable part, a fixed assembly, and a driving assembly. The movable part is configured to be connected to an optical element. The movable part is movable relative to the fixed assembly. The driving assembly is configured to drive the movable part to move relative to the fixed assembly. The movable part includes a connecting assembly configured to position the optical element.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: March 5, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Hsi Wang, Chao-Chang Hu, Chih-Wei Weng, Kuen-Wang Tsai, Tzu-Ying Chen
  • Patent number: 11921345
    Abstract: An optical element driving mechanism is provided in the present disclosure. The optical element driving mechanism includes a fixed portion and a movable portion. The movable portion moves relative to the fixed portion. The movable portion includes a first movable assembly and a second movable assembly. The first movable assembly is connected to a first optical element. The second movable assembly is connected to a second optical element. The first movable assembly and the second movable assembly are movable relative to each other.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: March 5, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Hsi Wang, Chao-Chang Hu, Chih-Wei Weng
  • Publication number: 20240069299
    Abstract: An optical element driving mechanism includes a movable assembly, a fixed assembly, and a driving assembly. The movable assembly is configured to be connected to an optical element. The movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly in a range of motion. The optical element driving mechanism further includes a positioning assembly configured to position the movable assembly at a predetermined position relative to the fixed assembly when the driving assembly is not operating.
    Type: Application
    Filed: November 9, 2023
    Publication date: February 29, 2024
    Inventors: Chao-Chang HU, Kuen-Wang TSAI, Liang-Ting HO, Chao-Hsi WANG, Chih-Wei WENG, He-Ling CHANG, Che-Wei CHANG, Sheng-Zong CHEN, Ko-Lun CHAO, Min-Hsiu TSAI, Shu-Shan CHEN, Jungsuck RYOO, Mao-Kuo HSU, Guan-Yu SU
  • Publication number: 20240072411
    Abstract: An electronic device includes a metal back cover, a metal frame, a first antenna module and a second antenna module. The metal frame includes a first and a second disconnection portion, a first and a second connection portion. The first and the second connection portion are connected to the metal back cover. The first disconnection portion is separated from the first connection portion, the metal back cover and the second disconnection portion to form a first slot. The second disconnection portion is connected to the second connection portion and is separated from the metal back cover to form a second slot. The first antenna module is connected to the first disconnection portion, and forms a first antenna path. The second antenna module is connected to the second disconnection portion, and forms a second and a third antenna path with the second disconnection portion and the metal back cover.
    Type: Application
    Filed: July 28, 2023
    Publication date: February 29, 2024
    Applicant: Pegatron Corporation
    Inventors: Chien-Yi Wu, Hau Yuen Tan, Chao-Hsu Wu, Chih-Wei Liao, Chia-Hung Chen, Chen-Kuang Wang, Wen-Hgin Chuang, Chia-Hong Chen, Hsi Yung Chen
  • Publication number: 20230006877
    Abstract: A radio frequency (RF) communication assembly includes an RF communication circuit and a compensator apparatus. The compensator apparatus receives an input including an I-component of a pre-compensated signal, a Q-component of the pre-compensated signal, and encoded operating conditions of the RF communication circuit. The RF communication circuit includes RF circuit components causing signal impairments. The compensator apparatus perform neural network computing on the input, and the RF communication assembly generates a compensated output signal that compensates for at least a portion of the signal impairments.
    Type: Application
    Filed: July 4, 2022
    Publication date: January 5, 2023
    Inventors: Po-Yu Chen, Yen-Liang Chen, Chi-Tsan Chen, Chao-Wei Wang
  • Patent number: 10516432
    Abstract: According to at least one aspect, a communication system is provided. The communication system includes a first switch device configured to receive a first plurality of radio frequency (RF) signals detected by an antenna array and provide an RF signal selected from among the first plurality of RF signals to a receiver circuit, the first plurality of RF signals comprising a first RF signal in a first frequency range and a second RF signal in a second frequency range that is different from the first frequency range; and a second switch device configured to receive a second plurality of RF signals detected by the antenna array and provide an RF signal selected from among the second plurality of RF signals to the receiver circuit, the second plurality of RF signals comprising a third RF signal in the first frequency range and a fourth RF signal in the second frequency range.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: December 24, 2019
    Assignee: MediaTek Inc.
    Inventors: Sheng-Che Tseng, Shih-Chieh Yen, Chi-Yao Yu, Chao-Wei Wang
  • Publication number: 20180159582
    Abstract: According to at least one aspect, a communication system is provided. The communication system includes a first switch device configured to receive a first plurality of radio frequency (RF) signals detected by an antenna array and provide an RF signal selected from among the first plurality of RF signals to a receiver circuit, the first plurality of RF signals comprising a first RF signal in a first frequency range and a second RF signal in a second frequency range that is different from the first frequency range; and a second switch device configured to receive a second plurality of RF signals detected by the antenna array and provide an RF signal selected from among the second plurality of RF signals to the receiver circuit, the second plurality of RF signals comprising a third RF signal in the first frequency range and a fourth RF signal in the second frequency range.
    Type: Application
    Filed: October 10, 2017
    Publication date: June 7, 2018
    Inventors: Sheng-Che Tseng, Shih-Chieh Yen, Chi-Yao Yu, Chao-Wei Wang
  • Patent number: 9007529
    Abstract: A filtering system includes a first filtering module, which includes a first frequency translating device and a first filter. The first frequency translating device includes a center frequency control end that receives a first control signal and an input end that receives an input signal, and performs a first frequency translation on the input signal by utilizing a first control frequency of the first control signal as a center frequency. The first filter performs a first filter on the input signal according to equivalent impedance of a circuit coupled to the input end, and generates in collaboration with the first frequency translating device a first filtered input signal at an output end of the filtering system. The equivalent impedance determines a bandwidth of the first filtered input signal.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: April 14, 2015
    Assignee: MStar Semiconductor, Inc.
    Inventors: Shih-Chieh Yen, Chao-Wei Wang
  • Publication number: 20150002746
    Abstract: A filtering system includes a first filtering module, which includes a first frequency translating device and a first filter. The first frequency translating device includes a center frequency control end that receives a first control signal and an input end that receives an input signal, and performs a first frequency translation on the input signal by utilizing a first control frequency of the first control signal as a center frequency. The first filter performs a first filter on the input signal according to equivalent impedance of a circuit coupled to the input end, and generates in collaboration with the first frequency translating device a first filtered input signal at an output end of the filtering system. The equivalent impedance determines a bandwidth of the first filtered input signal.
    Type: Application
    Filed: June 26, 2014
    Publication date: January 1, 2015
    Inventors: Shih-Chieh Yen, Chao-Wei Wang
  • Patent number: 8279020
    Abstract: The invention discloses the variable attenuator with characteristics, comprising wide attenuation ranges; syntheses on group delays, and low variation of the group delay. The building blocks, which construct the variable attenuator, comprise internal matching networks, external matching networks, delay networks, protecting networks, biasing network, a power combining network, and variable impedance networks. The elements, which realize the internal matching networks, external matching networks, signal combining networks, comprise resistor, inductor, capacitor, and transmission lines. The elements, which realize the variable impedance networks, comprise n-channel field-effect transistor (FET), p-channel FET, n-type bipolar junction transistor (BJT), and p-type BJT. The elements of the variable attenuator can be either integrated on a semiconductor chip by using system-on-chip (SOC) technologies.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: October 2, 2012
    Assignee: National Taiwan University
    Inventors: Ching-Kuang Tzuang, Chao-Wei Wang, Shian-Shun Wu
  • Publication number: 20110298569
    Abstract: The invention discloses the variable attenuator with characteristics, comprising wide attenuation ranges; syntheses on group delays, and low variation of the group delay. The building blocks, which construct the variable attenuator, comprise internal matching networks, external matching networks, delay networks, protecting networks, biasing network, a power combining network, and variable impedance networks. The elements, which realize the internal matching networks, external matching networks, signal combining networks, comprise resistor, inductor, capacitor, and transmission lines. The elements, which realize the variable impedance networks, comprise n-channel field-effect transistor (FET), p-channel FET, n-type bipolar junction transistor (BJT), and p-type BJT. The elements of the variable attenuator can be either integrated on a semiconductor chip by using system-on-chip (SOC) technologies.
    Type: Application
    Filed: June 7, 2010
    Publication date: December 8, 2011
    Inventors: Ching-Kuang Tzuang, Chao-Wei Wang, Shian-Shun Wu
  • Publication number: 20100009668
    Abstract: A system and method for customizing functions of a mobile phone provides different operation modes for different users of the mobile phone. The system and method further provides different function features under the different operation modes.
    Type: Application
    Filed: May 5, 2009
    Publication date: January 14, 2010
    Applicant: CHI MEI COMMUNICATION SYSTEMS, INC.
    Inventor: CHAO-WEI WANG
  • Patent number: 7460070
    Abstract: A chip antenna has a dielectric material layer, a first meandered strip, a second meandered strip and several bended strips. The first meandered strip is meandered in one direction and disposed on the dielectric material layer. The second meandered strip is meandered in another direction and disposed on the dielectric material layer. The first meandered strip is connected to the second meandered strip. The bended strips are connected to the turns of the meandered strips.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: December 2, 2008
    Assignee: Chant Sincere Co., Ltd.
    Inventors: Yen-Ming Chen, Chao-Wei Wang, Chang-Fa Yang, Shun-Iian Lin, Chuan-Lin Hu, Chang-Lun Liao, Yu-Wei Chen
  • Patent number: D981212
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: March 21, 2023
    Assignee: Jiangmen Qiangdi Plastic Hardware Co., Ltd
    Inventors: Xiao Lu Zhuo, Chao Wei Wang