Patents by Inventor Chaoyi Dong

Chaoyi Dong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11980879
    Abstract: Anion exchange polymers having high OH? conductivity, chemical stability, and mechanical stability have been developed for use in AEMs. The anion exchange polymers have stable hydrophobic polymer backbones, stable hydrophilic quaternary ammonium cationic groups, and hydrophilic phenolic hydroxyl groups on the polymer side chains. The polymers have polymer backbones free of ether bonds, hydrophilic polymer side chains, and piperidinium ion-conducting functionality, which enables efficient and stable operation in water or CO2 electrolysis, redox flow battery, and fuel cell applications. The polymer comprises a plurality of repeating units of formula (I) Anion exchange membranes and membrane electrode assemblies incorporating the anion exchange polymers are also described.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: May 14, 2024
    Assignee: UOP LLC
    Inventors: Chaoyi Ba, Chunqing Liu, Xueliang Dong
  • Patent number: 11970589
    Abstract: A composite proton conductive membrane, comprising an inorganic filler having covalently bonded acidic functional groups and a high surface area of at least 150 m2/g; and a water insoluble ionically conductive polymer. This membrane provides advantages over traditional polymeric proton conductive membranes for redox flow battery, fuel cell, and electrolysis applications include: 1) enhanced proton conductivity/permeance due to the formation of additional nanochannels for proton conducting; 2) improved proton/electrolyte selectivity for redox flow battery application; 3) reduced membrane swelling and gas or electrolyte crossover; 4) improved chemical stability; 5) increased cell operation time with stable performance, and 6) reduced membrane cost.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: April 30, 2024
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Xueliang Dong, Chaoyi Ba
  • Patent number: 11955678
    Abstract: Methods to improve redox flow battery performance with improved CE, reduced electrolyte solution crossover, and simplified solution refreshing process have been developed. The methods include controlling the pre-charging degree and conditions to allow high quality metal plating (ductile and uniform), for example, Fe(O), on the negative electrode. Control of the pre-charging conditions can be combined with increasing the concentration of metal ions compared to existing systems, while maintaining the same concentration in both the negative and positive electrolytes, or increasing the concentration of metal ions in the negative electrolyte so that the negative electrolyte has a higher concentration of metal ions than the positive electrolyte.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: April 9, 2024
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Chaoyi Ba, Xueliang Dong
  • Patent number: 11514567
    Abstract: The present invention provides an on-line real-time diagnosis system and method for wind turbine blade (WTB) damage. The system includes a four-rotor unmanned aerial vehicle (UAV), a cloud database, and a computer system. The four-rotor UAV captures images of WTBs in real time, and transmits the images to the computer system. The cloud database stores an image library used for a Visual Geometry Group (VGG)-19 net image classification method, where an image in the image library stored in the cloud database is dynamically captured from a network. The computer system is used to perform training by using the image library to obtain an improved VGG-19 net image classification method, and classify, by using the improved VGG-19 net image classification method, the images of the WTBs received from the four-rotor UAV, to obtain a WTB damage diagnosis and classification result and a damage grading result.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: November 29, 2022
    Assignee: Inner Mongolia University of Technology
    Inventors: Chaoyi Dong, Xiaoyi Zhao, Xiaoyan Chen
  • Publication number: 20200402220
    Abstract: The present invention provides an on-line real-time diagnosis system and method for wind turbine blade (WTB) damage. The system includes a four-rotor unmanned aerial vehicle (UAV), a cloud database, and a computer system. The four-rotor UAV captures images of WTBs in real time, and transmits the images to the computer system. The cloud database stores an image library used for a Visual Geometry Group (VGG)-19 net image classification method, where an image in the image library stored in the cloud database is dynamically captured from a network. The computer system is used to perform training by using the image library to obtain an improved VGG-19 net image classification method, and classify, by using the improved VGG-19 net image classification method, the images of the WTBs received from the four-rotor UAV, to obtain a WTB damage diagnosis and classification result and a damage grading result.
    Type: Application
    Filed: June 16, 2020
    Publication date: December 24, 2020
    Inventors: Chaoyi Dong, Xiaoyi Zhao, Xiaoyan Chen