Patents by Inventor Charanjit Singh Bhatia

Charanjit Singh Bhatia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9418692
    Abstract: A magnetic data storage medium includes an ion doped magnetic recording layer having a continuous grading of coercivity or anisotropy. The medium also includes an ion-doped overcoat having an ion density that is at a maximum substantially at the interface with the recording layer and has a continuous grading of ion density between the overcoat and the recording layer. The coercivity is at a minimum substantially at the interface.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: August 16, 2016
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Charanjit Singh Bhatia, Koashal Kishor Mani Pandey, Nikita Gaur, Siegfried L. Maurer, Ronald W. Nunes
  • Patent number: 9236565
    Abstract: Embodiments of the invention provide a method for fabricating a magnetoresistive device. The method comprises: releasing a multi-layer magnetoresistive structure for forming the magnetoresistive device from a first substrate to relax an intrinsic stress in the multi-layer magnetoresistive structure such that the magnetic and/or magnetoresistive properties of the magnetoresistive device can be improved. The magnetic and/or magnetoresistive properties include, but are not limited to coercivity, squareness or abruptness of switching, magnetoresistance (MR) and resistance of the magnetoresistive device.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: January 12, 2016
    Assignees: National University of Singapore, Yonsei University
    Inventors: Li Ming Loong, Hyunsoo Yang, Wonho Lee, Jong-Hyun Ahn, Charanjit Singh Bhatia
  • Publication number: 20150311434
    Abstract: Embodiments of the invention provide a method for fabricating a magnetoresistive device. The method comprises: releasing a multi-layer magnetoresistive structure for forming the magnetoresistive device from a first substrate to relax an intrinsic stress in the multi-layer magnetoresistive structure such that the magnetic and/or magnetoresistive properties of the magnetoresistive device can be improved. The magnetic and/or magnetoresistive properties include, but are not limited to coercivity, squareness or abruptness of switching, magnetoresistance (MR) and resistance of the magnetoresistive device.
    Type: Application
    Filed: April 28, 2015
    Publication date: October 29, 2015
    Inventors: Li Ming Loong, Hyunsoo Yang, Wonho Lee, Jong-Hyun Ahn, Charanjit Singh Bhatia
  • Publication number: 20150118521
    Abstract: A magnetic data storage medium includes an ion doped magnetic recording layer having a continuous grading of coercivity or anisotropy. The medium also includes an ion-doped overcoat having an ion density that is at a maximum substantially at the interface with the recording layer and has a continuous grading of ion density between the overcoat and the recording layer. The coercivity is at a minimum substantially at the interface.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 30, 2015
    Inventors: Charanjit Singh Bhatia, Koashal Kishor Mani Pandey, Nikita Gaur, Siegfried L. Maurer, Ronald W. Nunes
  • Patent number: 8947826
    Abstract: A durable wear-resistant coating consists of an atomically mixed layer on the surface of the head or media which is developed by bombardment of the surface with energetic C ions with optimized parameters. This mixed layer is covered with a hard DLC overcoat. This mixed interlayer is able to strongly bond the overcoat to the head or media substrate and improve the tribological properties of the overcoat. In this method a very thin layer of a carbide former material can be used as an interlayer before bombarding the surface with C ions which provides a composite interlayer containing C and species from interlayer and substrate. This composite interlayer bonds the DLC overact to the ceramic substrate of the head or the metallic substrate of the media. This interlayer by itself is protective enough to protect the head media of the hard drives against wear and corrosion.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: February 3, 2015
    Assignee: National University of Singapore
    Inventors: Charanjit Singh Bhatia, Ehsan Rismani-Yazdi, Sujeet Kumar Sinha
  • Patent number: 8900730
    Abstract: A magnetic data storage medium comprising: an ion doped magnetic recording layer having a continuous grading of coercivity or anisotropy, wherein the coercivity or anisotropy is at a minimum substantially at one side of the magnetic recording layer, and having substantial portion of maximum coercivity or anisotropy at the other side of the magnetic recording layer. Also, a method of fabricating a magnetic data storage medium is included.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charanjit Singh Bhatia, Koashal Kishor Mani Pandey, Nikita Gaur, Siegfried L. Maurer, Ronald W. Nunes
  • Patent number: 8767355
    Abstract: According to embodiments of the present invention, a piezoelectric actuator is provided. The piezoelectric actuator includes a shear mode piezoelectric material including a first arm and a second arm intersecting each other, the shear mode piezoelectric material having a polarization direction oriented at least substantially along a length of the first arm, wherein the shear mode piezoelectric material has a first surface and a second surface opposite to the first surface, the first surface and the second surface being adapted to undergo a shear displacement relative to each other along an axis at least substantially parallel to the polarization direction in response to an electric field applied between the first surface and the second surface in a direction at least substantially perpendicular to the polarization direction.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: July 1, 2014
    Assignee: Agency for Science, Technology and Research
    Inventors: Lei Zhang, Kui Yao, Charanjit Singh Bhatia
  • Publication number: 20130320254
    Abstract: A magnetic data storage medium comprising: an ion doped magnetic recording layer having a continuous grading of coercivity or anisotropy, wherein the coercivity or anisotropy is at a minimum substantially at one side of the magnetic recording layer, and having substantial portion of maximum coercivity or anisotropy at the other side of the magnetic recording layer. Also, a method of fabricating a magnetic data storage medium is included.
    Type: Application
    Filed: January 31, 2012
    Publication date: December 5, 2013
    Applicants: National University of Singapore, International Business Machines Corporation
    Inventors: Charanjit Singh Bhatia, Koashal Kishor Mani Pandey, Nikita Gaur, Siegfried L. Maurer, Ronald W. Nunes
  • Publication number: 20100190036
    Abstract: Provided are filtered cathodic vacuum arc systems useful for modifying a surface of a substrate (e.g. depositing a thin film of a material onto a surface of a substrate and/or implanting a material into the near-surface region of a substrate). The systems are configured to stabilize a do arc discharge plasma from an arc source. Also provided are methods for modifying a surface of a substrate, which in some cases includes depositing a material onto a surface of a substrate, in some cases includes implanting a material into the near-surface region of a substrate, and in some cases includes both depositing a material onto a surface of a substrate and implanting a material into the near-surface region of a substrate using the subject cathodic arc systems. In addition, magnetic recording media produced by the subject systems and methods are provided.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 29, 2010
    Inventors: Kyriakos Komvopoulos, Hanshen Zhang, Charanjit Singh Bhatia