Patents by Inventor Chariklia Sotiriou-Leventis

Chariklia Sotiriou-Leventis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180305491
    Abstract: The present invention is directed to a process for preparing a porous material, at least compris-ing the steps of providing a mixture (I) comprising a composition (A) at least comprising at least one polyfunctional isocyanate as component (ai) and at least one mineral acid (aa), and a sol-vent (B), reacting the components in the composition (A) obtaining an organic gel, and drying of the gel obtained. The invention further relates to the porous materials which can be obtained in this way and the use of the porous materials as thermal insulation material and as catalysts.
    Type: Application
    Filed: October 11, 2016
    Publication date: October 25, 2018
    Applicants: BASF SE, THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Wibke LOELSBERG, Marc FRICKE, Dirk WEINRICH, Nicholas LEVENTIS, Chariklia SOTIRIOU-LEVENTIS, Adnan M SAEED
  • Publication number: 20180272312
    Abstract: The present invention discloses novel porous polymeric compositions comprising random copolymers of amides, imides, ureas, and carbamic-anhydrides, useful for the synthesis of monolithic bimodal microporous/macroporous carbon aerogels. It also discloses methods for producing said microporous/macroporous carbon aerogels by the reaction of a polyisocyanate compound and a polycarboxylic acid compound, followed by pyrolytic carbonization, and by reactive etching with CO2 at elevated temperatures. Also disclosed are methods for using the microporous/macroporous carbon aerogels in the selective capture and sequestration of carbon dioxide.
    Type: Application
    Filed: March 23, 2017
    Publication date: September 27, 2018
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Malik Adnan Saeed
  • Publication number: 20180257941
    Abstract: Three-dimensional nanoporous aerogels and suitable preparation methods are provided. Nanoporous aerogels may include a carbide material such as a silicon carbide, a metal carbide, or a metalloid carbide. Elemental (e.g., metallic or metalloid) aerogels may also be produced. In some embodiments, a cross-linked aerogel having a conformal coating on a sol-gel material is processed to form a carbide aerogel, metal aerogel, or metalloid aerogel. A three-dimensional nanoporous network may include a free radical initiator that reacts with a cross-linking agent to form the cross-linked aerogel. The cross-linked aerogel may be chemically aromatized and chemically carbonized to form a carbon-coated aerogel. The carbon-coated aerogel may be suitably processed to undergo a carbothermal reduction, yielding an aerogel where oxygen is chemically extracted. Residual carbon remaining on the surface of the aerogel may be removed via an appropriate cleaning treatment.
    Type: Application
    Filed: October 6, 2017
    Publication date: September 13, 2018
    Applicant: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Anand G. Sadekar, Naveen Candrasekaran, Chariklia Sotiriou-Leventis
  • Publication number: 20180251623
    Abstract: Nanoporous three-dimensional networks of polyurethane particles, e.g., polyurethane aerogels, and methods of preparation are presented herein. Such nanoporous networks may include polyurethane particles made up of linked polyisocyanate and polyol monomers. In some cases, greater than about 95% of the linkages between the polyisocyanate monomers and the polyol monomers are urethane linkages. To prepare such networks, a mixture including polyisocyanate monomers (e.g., diisocyanates, triisocyanates), polyol monomers (diols, triols), and a solvent is provided. The polyisocyanate and polyol monomers may be aliphatic or aromatic. A polyurethane catalyst is added to the mixture causing formation of linkages between the polyisocyanate monomers and the polyol monomers. Phase separation of particles from the reaction medium can be controlled to enable formation of polyurethane networks with desirable nanomorphologies, specific surface area, and mechanical properties.
    Type: Application
    Filed: October 6, 2017
    Publication date: September 6, 2018
    Applicant: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Chakkaravarthy Chidambareswarapattar
  • Publication number: 20180162736
    Abstract: Porous three-dimensional networks of polyimide and porous three-dimensional networks of carbon and methods of their manufacture are described. For example, polyimide aerogels are prepared by mixing a dianhydride and a diisocyanate in a solvent comprising a pyrrolidone and acetonitrile at room temperature to form a sol-gel material and supercritically drying the sol-gel material to form the polyimide aerogel. Porous three-dimensional polyimide networks, such as polyimide aerogels, may also exhibit a fibrous morphology. Having a porous three-dimensional polyimide network undergo an additional step of pyrolysis may result in the three dimensional network being converted to a purely carbon skeleton, yielding a porous three-dimensional carbon network. The carbon network, having been derived from a fibrous polyimide network, may also exhibit a fibrous morphology.
    Type: Application
    Filed: July 19, 2017
    Publication date: June 14, 2018
    Applicant: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Chakkaravarthy Chidambareswarapattar
  • Patent number: 9994516
    Abstract: Novel urethane-acrylate (UAC) Star monomers and polyurethane-acrylate (PUAC) aerogel polymers derived therefrom are described herein, along with other novel, related monomers and polymers. Also described herein are processes for preparing the UAC Star monomers, the PUAC aerogel polymers, and the other related monomers and polymers. The PUAC and related polymers herein are useful in various applications including in structural and thermal insulation.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: June 12, 2018
    Assignee: The Curators of The University of Missouri
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Abhishek Bang
  • Patent number: 9809694
    Abstract: Nanoporous three-dimensional networks of polyurethane particles, e.g., polyurethane aerogels, and methods of preparation are presented herein. Such nanoporous networks may include polyurethane particles made up of linked polyisocyanate and polyol monomers. In some cases, greater than about 95% of the linkages between the polyisocyanate monomers and the polyol monomers are urethane linkages. To prepare such networks, a mixture including polyisocyanate monomers (e.g., diisocyanates, triisocyanates), polyol monomers (diols, triols), and a solvent is provided. The polyisocyanate and polyol monomers may be aliphatic or aromatic. A polyurethane catalyst is added to the mixture causing formation of linkages between the polyisocyanate monomers and the polyol monomers. Phase separation of particles from the reaction medium can be controlled to enable formation of polyurethane networks with desirable nanomorphologies, specific surface area, and mechanical properties.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: November 7, 2017
    Assignee: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Chakkaravarthy Chidambareswarapattar
  • Patent number: 9745198
    Abstract: Porous three-dimensional networks of polyimide and porous three-dimensional networks of carbon and methods of their manufacture are described. For example, polyimide aerogels are prepared by mixing a dianhydride and a diisocyanate in a solvent comprising a pyrrolidone and acetonitrile at room temperature to form a sol-gel material and supercritically drying the sol-gel material to form the polyimide aerogel. Porous three-dimensional polyimide networks, such as polyimide aerogels, may also exhibit a fibrous morphology. Having a porous three-dimensional polyimide network undergo an additional step of pyrolysis may result in the three dimensional network being converted to a purely carbon skeleton, yielding a porous three-dimensional carbon network. The carbon network, having been derived from a fibrous polyimide network, may also exhibit a fibrous morphology.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: August 29, 2017
    Assignee: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Chakkaravarthy Chidambareswarapattar
  • Publication number: 20170137376
    Abstract: Novel urethane-acrylate (UAC) Star monomers and polyurethane-acrylate (PUAC) aerogel polymers derived therefrom are described herein, along with other novel, related monomers and polymers. Also described herein are processes for preparing the UAC Star monomers, the PUAC aerogel polymers, and the other related monomers and polymers. The PUAC and related polymers herein are useful in various applications including in structural and thermal insulation.
    Type: Application
    Filed: October 31, 2016
    Publication date: May 18, 2017
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Abhishek Bang
  • Patent number: 9593225
    Abstract: The present disclosure provides a series of new and improved porous polyamide aerogels derived from multifunctional aromatics that combine the high mechanical strength of aramids with the pore structure of aerogels. The polyamide aerogels have a hyperbranched structure, relatively low density, high porosity and may be derived from functionalized monomers having more aromatic groups than functional groups. The present disclosure also provides a new method for producing the porous polyamide aerogels by polymerizing an aromatic multifunctional carboxylic acid or a ferrocene multifunctional carboxylic acid with a polyfunctional aromatic isocyanate at moderate reaction conditions followed by drying with liquid CO2. Also disclosed are various methods of use of these polyamide aerogels in a variety of applications, particularly in the generation of various precious metal catalysts.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: March 14, 2017
    Assignee: The Curators of the University of Missouri
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Malik Adnan Saeed
  • Publication number: 20170050990
    Abstract: Cross-linked sol-gel like materials and cross-linked aerogels, as well as methods for making such cross-linked sol-gel like materials and cross-linked aerogels are described.
    Type: Application
    Filed: September 1, 2016
    Publication date: February 23, 2017
    Applicant: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis
  • Patent number: 9550846
    Abstract: Novel urethane-acrylate (UAC) Star monomers and polyurethane-acrylate (PUAC) aerogel polymers derived therefrom are described herein, along with other novel, related monomers and polymers. Also described herein are processes for preparing the UAC Star monomers, the PUAC aerogel polymers, and the other related monomers and polymers. The PUAC and related polymers herein are useful in various applications including in structural and thermal insulation.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: January 24, 2017
    Assignee: The Curators of the University of Missouri
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Abhishek Bang
  • Publication number: 20160102187
    Abstract: The present disclosure provides a series of new and improved porous polyamide aerogels derived from multifunctional aromatics that combine the high mechanical strength of aramids with the pore structure of aerogels. The polyamide aerogels have a hyperbranched structure, relatively low density, high porosity and may be derived from functionalized monomers having more aromatic groups than functional groups. The present disclosure also provides a new method for producing the porous polyamide aerogels by polymerizing an aromatic multifunctional carboxylic acid or a ferrocene multifunctional carboxylic acid with a polyfunctional aromatic isocyanate at moderate reaction conditions followed by drying with liquid CO2. Also disclosed are various methods of use of these polyamide aerogels in a variety of applications, particularly in the generation of various precious metal catalysts.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 14, 2016
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Malik Adnan Saeed
  • Patent number: 9260581
    Abstract: The present disclosure provides a series of new and improved porous polyamide aerogels derived from multifunctional aromatics that combine the high mechanical strength of aramids with the pore structure of aerogels. The polyamide aerogels have a hyperbranched structure, relatively low density, high porosity and may be derived from functionalized monomers having more aromatic groups than functional groups. The present disclosure also provides a new method for producing the porous polyamide aerogels by polymerizing an aromatic multifunctional carboxylic acid or a ferrocene multifunctional carboxylic acid with a polyfunctional aromatic isocyanate at moderate reaction conditions followed by drying with liquid CO2. Also disclosed are various methods of use of these polyamide aerogels in a variety of applications.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: February 16, 2016
    Assignee: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Malik Adnan Saeed
  • Publication number: 20150284258
    Abstract: The present disclosure provides cost-effective sol-gel methods to produce nanostructured, nanoporous vanadium oxides from inexpensive vanadium halides of the formula VOX3. In one aspect, a synthetic method for preparing vanadium (IV,V) mixed oxide gels is described comprising epoxide-assisted gelation of a vanadium halide of the formula VOX3, such as VOCl3. The resulting aerogels are robust and possess similar morphology and reactivity to gels fabricated via the significantly more costly vanadium alkoxide methods.
    Type: Application
    Filed: April 7, 2015
    Publication date: October 8, 2015
    Inventors: Tyler Martin Fears, Nicholas Leventis, Chariklia Sotiriou-Leventis, Jeffrey G. Winiarz
  • Publication number: 20150267026
    Abstract: Nanoporous three-dimensional networks of polyurethane particles, e.g., polyurethane aerogels, and methods of preparation are presented herein. Such nanoporous networks may include polyurethane particles made up of linked polyisocyanate and polyol monomers. In some cases, greater than about 95% of the linkages between the polyisocyanate monomers and the polyol monomers are urethane linkages. To prepare such networks, a mixture including polyisocyanate monomers (e.g., diisocyanates, triisocyanates), polyol monomers (diols, triols), and a solvent is provided. The polyisocyanate and polyol monomers may be aliphatic or aromatic. A polyurethane catalyst is added to the mixture causing formation of linkages between the polyisocyanate monomers and the polyol monomers. Phase separation of particles from the reaction medium can be controlled to enable formation of polyurethane networks with desirable nanomorphologies, specific surface area, and mechanical properties.
    Type: Application
    Filed: November 26, 2014
    Publication date: September 24, 2015
    Applicant: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Chakkaravarthy Chidambareswarapattar
  • Publication number: 20150266983
    Abstract: Novel urethane-acrylate (UAC) Star monomers and polyurethane-acrylate (PUAC) aerogel polymers derived therefrom are described herein, along with other novel, related monomers and polymers. Also described herein are processes for preparing the UAC Star monomers, the PUAC aerogel polymers, and the other related monomers and polymers. The PUAC and related polymers herein are useful in various applications including in structural and thermal insulation.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 24, 2015
    Applicant: The Curators of the University of Missouri
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Abhishek Bang
  • Patent number: 9068346
    Abstract: The invention is directed to a porous, acoustic attenuating composition, wherein the composition comprises a nanostructured material and wherein the composition exhibits acoustic transmission loss ranging from 20 to 60 dB/cm thickness of the composition.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: June 30, 2015
    Assignees: The Board of Regents of the University of Texas System, Rensselaer Polytechnic Institute, The Curators of the University of Missouri
    Inventors: Hongbing Lu, Ning Xiang, Nicholas Leventis, Chariklia Sotiriou-Leventis
  • Publication number: 20150111976
    Abstract: The present disclosure provides a series of new and improved porous polyamide aerogels derived from multifunctional aromatics that combine the high mechanical strength of aramids with the pore structure of aerogels. The polyamide aerogels have a hyperbranched structure, relatively low density, high porosity and may be derived from functionalized monomers having more aromatic groups than functional groups. The present disclosure also provides a new method for producing the porous polyamide aerogels by polymerizing an aromatic multifunctional carboxylic acid or a ferrocene multifunctional carboxylic acid with a polyfunctional aromatic isocyanate at moderate reaction conditions followed by drying with liquid CO2. Also disclosed are various methods of use of these polyamide aerogels in a variety of applications.
    Type: Application
    Filed: October 31, 2014
    Publication date: April 23, 2015
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Malik Adnan Saeed
  • Patent number: 8927079
    Abstract: Nanoporous three-dimensional networks of polyurethane particles, e.g., polyurethane aerogels, and methods of preparation are presented herein. Such nanoporous networks may include polyurethane particles made up of linked polyisocyanate and polyol monomers. In some cases, greater than about 95% of the linkages between the polyisocyanate monomers and the polyol monomers are urethane linkages. To prepare such networks, a mixture including polyisocyanate monomers (e.g., diisocyanates, triisocyanates), polyol monomers (diols, triols), and a solvent is provided. The polyisocyanate and polyol monomers may be aliphatic or aromatic. A polyurethane catalyst is added to the mixture causing formation of linkages between the polyisocyanate monomers and the polyol monomers. Phase separation of particles from the reaction medium can be controlled to enable formation of polyurethane networks with desirable nanomorphologies, specific surface area, and mechanical properties.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: January 6, 2015
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Chakkaravarthy Chidambareswarapattar