Patents by Inventor Charles A. Cain
Charles A. Cain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12220602Abstract: A histotripsy therapy system configured for the treatment of brain tissue is provided, which may include any number of features. In one embodiment, the system includes an ultrasound therapy transducer, a drainage catheter, and a plurality of piezoelectric sensors disposed in the drainage catheter. The ultrasound therapy is configured to transmit ultrasound pulses into the brain to generate cavitation that liquefies a target tissue in the brain. The drainage catheter is configured to detect the ultrasound pulses. An aberration correction algorithm can be executed by the system based on the ultrasound pulses measured by the drainage catheter to automatically correct for an aberration effect caused by the ultrasound pulses passing through a skullcap of the patient.Type: GrantFiled: August 20, 2021Date of Patent: February 11, 2025Assignee: The Regents of the University of MichiganInventors: Zhen Xu, Jonathan Sukovich, Aditya S. Pandey, Charles A. Cain, Hitinder S. Gurm
-
Patent number: 12150661Abstract: Methods for performing non-invasive thrombolysis with ultrasound using, in some embodiments, one or more ultrasound transducers to focus or place a high intensity ultrasound beam onto a blood clot (thrombus) or other vascular inclusion or occlusion (e.g., clot in the dialysis graft, deep vein thrombosis, superficial vein thrombosis, arterial embolus, bypass graft thrombosis or embolization, pulmonary embolus) which would be ablated (eroded, mechanically fractionated, liquefied, or dissolved) by ultrasound energy. The process can employ one or more mechanisms, such as of cavitational, sonochemical, mechanical fractionation, or thermal processes depending on the acoustic parameters selected. This general process, including the examples of application set forth herein, is henceforth referred to as “Thrombolysis.Type: GrantFiled: June 5, 2023Date of Patent: November 26, 2024Assignee: The Regents of the University of MichiganInventors: Adam D. Maxwell, Zhen Xu, Hitinder S. Gurm, Charles A. Cain
-
Publication number: 20240315713Abstract: Methods for performing non-invasive thrombolysis with ultrasound using, in some embodiments, one or more ultrasound transducers to focus or place a high intensity ultrasound beam onto a blood clot (thrombus) or other vascular inclusion or occlusion (e.g., clot in the dialysis graft, deep vein thrombosis, superficial vein thrombosis, arterial embolus, bypass graft thrombosis or embolization, pulmonary embolus) which would be ablated (eroded, mechanically fractionated, liquefied, or dissolved) by ultrasound energy. The process can employ one or more mechanisms, such as of cavitational, sonochemical, mechanical fractionation, or thermal processes depending on the acoustic parameters selected. This general process, including the examples of application set forth herein, is henceforth referred to as “Thrombolysis.Type: ApplicationFiled: June 7, 2024Publication date: September 26, 2024Inventors: Adam D. MAXWELL, Zhen XU, Hitinder S. GURM, Charles A. CAIN
-
Publication number: 20240225671Abstract: Methods for performing non-invasive thrombolysis with ultrasound using, in some embodiments, one or more ultrasound transducers to focus or place a high intensity ultrasound beam onto a blood clot (thrombus) or other vascular inclusion or occlusion (e.g., clot in the dialysis graft, deep vein thrombosis, superficial vein thrombosis, arterial embolus, bypass graft thrombosis or embolization, pulmonary embolus) which would be ablated (eroded, mechanically fractionated, liquefied, or dissolved) by ultrasound energy. The process can employ one or more mechanisms, such as of cavitational, sonochemical, mechanical fractionation, or thermal processes depending on the acoustic parameters selected. This general process, including the examples of application set forth herein, is henceforth referred to as “Thrombolysis.Type: ApplicationFiled: June 5, 2023Publication date: July 11, 2024Inventors: Adam D. MAXWELL, Zhen XU, Hitinder S. GURM, Charles A. CAIN
-
Publication number: 20240130746Abstract: Methods for performing non-invasive thrombolysis with ultrasound using, in some embodiments, one or more ultrasound transducers to focus or place a high intensity ultrasound beam onto a blood clot (thrombus) or other vascular inclusion or occlusion (e.g., clot in the dialysis graft, deep vein thrombosis, superficial vein thrombosis, arterial embolus, bypass graft thrombosis or embolization, pulmonary embolus) which would be ablated (eroded, mechanically fractionated, liquefied, or dissolved) by ultrasound energy. The process can employ one or more mechanisms, such as of cavitational, sonochemical, mechanical fractionation, or thermal processes depending on the acoustic parameters selected. This general process, including the examples of application set forth herein, is henceforth referred to as “Thrombolysis.Type: ApplicationFiled: June 4, 2023Publication date: April 25, 2024Inventors: Adam D. MAXWELL, Zhen XU, Hitinder S. GURM, Charles A. CAIN
-
Publication number: 20240033542Abstract: Apparatus and methods are provided for applying ultrasound pulses into tissue or a medium in which the peak negative pressure (P?) of one or more negative half cycle(s) of the ultrasound pulses exceed(s) an intrinsic threshold of the tissue or medium, to directly form a dense bubble cloud in the tissue or medium without shock-scattering. In one embodiment, a microtripsy method of Histotripsy therapy comprises delivering an ultrasound pulse from an ultrasound therapy transducer into tissue, the ultrasound pulse having at least a portion of a peak negative pressure half-cycle that exceeds an intrinsic threshold in the tissue to produce a bubble cloud of at least one bubble in the tissue, and generating a lesion in the tissue with the bubble cloud. The intrinsic threshold can vary depending on the type of tissue to be treated. In some embodiments, the intrinsic threshold in tissue can range from 15-30 MPa.Type: ApplicationFiled: October 12, 2023Publication date: February 1, 2024Inventors: Charles A. CAIN, Adam D. MAXWELL, Zhen XU, Kuang-Wei LIN
-
Patent number: 11819712Abstract: Apparatus and methods are provided for applying ultrasound pulses into tissue or a medium in which the peak negative pressure (P?) of one or more negative half cycle(s) of the ultrasound pulses exceed(s) an intrinsic threshold of the tissue or medium, to directly form a dense bubble cloud in the tissue or medium without shock-scattering. In one embodiment, a microtripsy method of Histotripsy therapy comprises delivering an ultrasound pulse from an ultrasound therapy transducer into tissue, the ultrasound pulse having at least a portion of a peak negative pressure half-cycle that exceeds an intrinsic threshold in the tissue to produce a bubble cloud of at least one bubble in the tissue, and generating a lesion in the tissue with the bubble cloud. The intrinsic threshold can vary depending on the type of tissue to be treated. In some embodiments, the intrinsic threshold in tissue can range from 15-30 MPa.Type: GrantFiled: August 31, 2020Date of Patent: November 21, 2023Assignee: The Regents of the University of MichiganInventors: Charles A. Cain, Adam Maxwell, Zhen Xu, Kuang-Wei Lin
-
Patent number: 11701134Abstract: Methods for performing non-invasive thrombolysis with ultrasound using, in some embodiments, one or more ultrasound transducers to focus or place a high intensity ultrasound beam onto a blood clot (thrombus) or other vascular inclusion or occlusion (e.g., clot in the dialysis graft, deep vein thrombosis, superficial vein thrombosis, arterial embolus, bypass graft thrombosis or embolization, pulmonary embolus) which would be ablated (eroded, mechanically fractionated, liquefied, or dissolved) by ultrasound energy. The process can employ one or more mechanisms, such as of cavitational, sonochemical, mechanical fractionation, or thermal processes depending on the acoustic parameters selected. This general process, including the examples of application set forth herein, is henceforth referred to as “Thrombolysis.Type: GrantFiled: June 10, 2022Date of Patent: July 18, 2023Assignee: The Regents of the University of MichiganInventors: Adam D. Maxwell, Zhen Xu, Hitinder S. Gurm, Charles A. Cain
-
Publication number: 20220323088Abstract: Methods for performing non-invasive thrombolysis with ultrasound using, in some embodiments, one or more ultrasound transducers to focus or place a high intensity ultrasound beam onto a blood clot (thrombus) or other vascular inclusion or occlusion (e.g., clot in the dialysis graft, deep vein thrombosis, superficial vein thrombosis, arterial embolus, bypass graft thrombosis or embolization, pulmonary embolus) which would be ablated (eroded, mechanically fractionated, liquefied, or dissolved) by ultrasound energy. The process can employ one or more mechanisms, such as of cavitational, sonochemical, mechanical fractionation, or thermal processes depending on the acoustic parameters selected. This general process, including the examples of application set forth herein, is henceforth referred to as “Thrombolysis.Type: ApplicationFiled: June 10, 2022Publication date: October 13, 2022Inventors: Adam D. MAXWELL, Zhen XU, Hitinder S. GURM, Charles A. CAIN
-
Publication number: 20220219019Abstract: A histotripsy therapy system configured for the treatment of brain tissue is provided, which may include any number of features. In one embodiment, the system includes an ultrasound therapy transducer, a drainage catheter, and a plurality of piezoelectric sensors disposed in the drainage catheter. The ultrasound therapy is configured to transmit ultrasound pulses into the brain to generate cavitation that liquefies a target tissue in the brain. The drainage catheter is configured to detect the ultrasound pulses. An aberration correction algorithm can be executed by the system based on the ultrasound pulses measured by the drainage catheter to automatically correct for an aberration effect caused by the ultrasound pulses passing through a skullcap of the patient.Type: ApplicationFiled: August 20, 2021Publication date: July 14, 2022Inventors: Zhen XU, Jonathan SUKOVICH, Aditya S. PANDEY, Charles A. CAIN, Hitinder S. GURM
-
Patent number: 11364042Abstract: Methods for performing non-invasive thrombolysis with ultrasound using, in some embodiments, one or more ultrasound transducers to focus or place a high intensity ultrasound beam onto a blood clot (thrombus) or other vascular inclusion or occlusion (e.g., clot in the dialysis graft, deep vein thrombosis, superficial vein thrombosis, arterial embolus, bypass graft thrombosis or embolization, pulmonary embolus) which would be ablated (eroded, mechanically fractionated, liquefied, or dissolved) by ultrasound energy. The process can employ one or more mechanisms, such as of cavitational, sonochemical, mechanical fractionation, or thermal processes depending on the acoustic parameters selected. This general process, including the examples of application set forth herein, is henceforth referred to as “Thrombolysis.Type: GrantFiled: March 5, 2019Date of Patent: June 21, 2022Assignee: The Regents of the University of MichiganInventors: Adam D. Maxwell, Zhen Xu, Hitinder S. Gurm, Charles A. Cain
-
Patent number: 11135454Abstract: A histotripsy therapy system configured for the treatment of brain tissue is provided, which may include any number of features. In one embodiment, the system includes an ultrasound therapy transducer, a drainage catheter, and a plurality of piezoelectric sensors disposed in the drainage catheter. The ultrasound therapy is configured to transmit ultrasound pulses into the brain to generate cavitation that liquefies a target tissue in the brain. The drainage catheter is configured to detect the ultrasound pulses. An aberration correction algorithm can be executed by the system based on the ultrasound pulses measured by the drainage catheter to automatically correct for an aberration effect caused by the ultrasound pulses passing through a skullcap of the patient.Type: GrantFiled: June 23, 2016Date of Patent: October 5, 2021Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Zhen Xu, Jonathan Sukovich, Aditya S. Pandey, Charles A. Cain, Hitinder S. Gurm
-
Patent number: 11058399Abstract: A Histotripsy therapy system is provided that can include any number of features. In some embodiments, the system includes a high voltage power supply, a pulse generator electrically coupled to at least one signal switching amplifier, at least one matching network electrically coupled to the signal switching amplifier(s), and an ultrasound transducer having at least one transducer element. The Histotripsy therapy system can further include an ultrasound Doppler imaging system. The Doppler imaging system and the Histotripsy therapy system can be synchronized to enable color Doppler acquisition of the fractionation of tissue during Histotripsy therapy. Methods of use are also described.Type: GrantFiled: September 22, 2017Date of Patent: July 13, 2021Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Zhen Xu, Ryan M. Miller, Adam D. Maxwell, Charles A. Cain
-
Publication number: 20210008394Abstract: Apparatus and methods are provided for applying ultrasound pulses into tissue or a medium in which the peak negative pressure (P?) of one or more negative half cycle(s) of the ultrasound pulses exceed(s) an intrinsic threshold of the tissue or medium, to directly form a dense bubble cloud in the tissue or medium without shock-scattering. In one embodiment, a microtripsy method of Histotripsy therapy comprises delivering an ultrasound pulse from an ultrasound therapy transducer into tissue, the ultrasound pulse having at least a portion of a peak negative pressure half-cycle that exceeds an intrinsic threshold in the tissue to produce a bubble cloud of at least one bubble in the tissue, and generating a lesion in the tissue with the bubble cloud. The intrinsic threshold can vary depending on the type of tissue to be treated. In some embodiments, the intrinsic threshold in tissue can range from 15-30 MPa.Type: ApplicationFiled: August 31, 2020Publication date: January 14, 2021Inventors: Charles A. CAIN, Adam MAXWELL, Zhen XU, Kuang-Wei LIN
-
Patent number: 10780298Abstract: Apparatus and methods are provided for applying ultrasound pulses into tissue or a medium in which the peak negative pressure (P?) of one or more negative half cycle(s) of the ultrasound pulses exceed(s) an intrinsic threshold of the tissue or medium, to directly form a dense bubble cloud in the tissue or medium without shock-scattering. In one embodiment, a microtripsy method of Histotripsy therapy comprises delivering an ultrasound pulse from an ultrasound therapy transducer into tissue, the ultrasound pulse having at least a portion of a peak negative pressure half-cycle that exceeds an intrinsic threshold in the tissue to produce a bubble cloud of at least one bubble in the tissue, and generating a lesion in the tissue with the bubble cloud. The intrinsic threshold can vary depending on the type of tissue to be treated. In some embodiments, the intrinsic threshold in tissue can range from 15-30 MPa.Type: GrantFiled: August 22, 2014Date of Patent: September 22, 2020Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Charles A. Cain, Adam Maxwell, Zhen Xu, Kuang-Wei Lin
-
Publication number: 20190216478Abstract: Methods for performing non-invasive thrombolysis with ultrasound using, in some embodiments, one or more ultrasound transducers to focus or place a high intensity ultrasound beam onto a blood clot (thrombus) or other vascular inclusion or occlusion (e.g., clot in the dialysis graft, deep vein thrombosis, superficial vein thrombosis, arterial embolus, bypass graft thrombosis or embolization, pulmonary embolus) which would be ablated (eroded, mechanically fractionated, liquefied, or dissolved) by ultrasound energy. The process can employ one or more mechanisms, such as of cavitational, sonochemical, mechanical fractionation, or thermal processes depending on the acoustic parameters selected. This general process, including the examples of application set forth herein, is henceforth referred to as “Thrombolysis.Type: ApplicationFiled: March 5, 2019Publication date: July 18, 2019Inventors: Adam D. MAXWELL, Zhen XU, Hitinder S. GURM, Charles A. CAIN
-
Patent number: 10219815Abstract: Methods for performing non-invasive thrombolysis with ultrasound using, in some embodiments, one or more ultrasound transducers to focus or place a high intensity ultrasound beam onto a blood clot (thrombus) or other vascular inclusion or occlusion (e.g., clot in the dialysis graft, deep vein thrombosis, superficial vein thrombosis, arterial embolus, bypass graft thrombosis or embolization, pulmonary embolus) which would be ablated (eroded, mechanically fractionated, liquefied, or dissolved) by ultrasound energy. The process can employ one or more mechanisms, such as of cavitational, sonochemical, mechanical fractionation, or thermal processes depending on the acoustic parameters selected. This general process, including the examples of application set forth herein, is henceforth referred to as “Thrombolysis.Type: GrantFiled: January 23, 2009Date of Patent: March 5, 2019Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Adam Maxwell, Zhen Xu, Hitinder S. Gurm, Charles A. Cain
-
Patent number: 10071266Abstract: A medical imaging and therapy device is provided that may include any of a number of features. The device may include a Histotripsy transducer, a generator and controller configured to deliver Histotripsy energy from the transducer to target tissue, and an imaging system. In some embodiments, a method of treating tissue with Histotripsy energy comprises positioning a focus of a histotripsy transducer on a target tissue, delivering histotripsy energy from the histotripsy transducer through a bone aberrator, forming a histotripsy bubble cloud on the focus, and preventing the formation of secondary histotripsy bubble clouds without implementing an aberration correction algorithm.Type: GrantFiled: September 3, 2015Date of Patent: September 11, 2018Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventor: Charles A. Cain
-
Publication number: 20180154186Abstract: A histotripsy therapy system configured for the treatment of brain tissue is provided, which may include any number of features. In one embodiment, the system includes an ultrasound therapy transducer, a drainage catheter, and a plurality of piezoelectric sensors disposed in the drainage catheter. The ultrasound therapy is configured to transmit ultrasound pulses into the brain to generate cavitation that liquefies a target tissue in the brain. The drainage catheter is configured to detect the ultrasound pulses. An aberration correction algorithm can be executed by the system based on the ultrasound pulses measured by the drainage catheter to automatically correct for an aberration effect caused by the ultrasound pulses passing through a skullcap of the patient.Type: ApplicationFiled: June 23, 2016Publication date: June 7, 2018Inventors: Zhen XU, Jonathan SUKOVICH, Aditya S. PANDEY, Charles A. CAIN, Hitinder S. GURM
-
Patent number: 9943708Abstract: A medical imaging and therapy device is provided that may include any of a number of features. One feature of the device is that it can image a target tissue volume and apply ultrasound energy to the target tissue volume. In some embodiments, the medical imaging and therapy device is configured controllably apply ultrasound energy into the prostate by maintaining a cavitational bubble cloud generated by an ultrasound therapy system within an image of the prostate generated by an imaging system. The medical imaging and therapy device can be used in therapeutic applications such as Histotripsy, Lithotripsy, and HIFU, for example. Methods associated with use of the medical imaging and therapy device are also covered.Type: GrantFiled: August 26, 2010Date of Patent: April 17, 2018Assignees: HISTOSONICS, INC., THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: William W. Roberts, Timothy L. Hall, Charles A. Cain, J. Brian Fowlkes, Zhen Xu, Michael Thomas Kusner, Jr., Dejan Teofilovic