Patents by Inventor Charles A. Reisman

Charles A. Reisman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11704791
    Abstract: Machine learning technologies are used to identify and separating abnormal and normal subjects and identifying possible disease types with images (e.g., optical coherence tomography (OCT) images of the eye), where the machine learning technologies are trained with only normative data. In one example, a feature or a physiological structure of an image is extracted, and the image is classified based on the extracted feature. In another example, a region of the image is masked and then reconstructed, and a similarity is determined between the reconstructed region and the original region of the image. A label (indicating an abnormality) and a score (indicating a severity) can be determined based on the classification and/or the similarity.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: July 18, 2023
    Assignee: TOPCON CORPORATION
    Inventors: Qi Yang, Bisrat Zerihun, Charles A. Reisman
  • Patent number: 11481897
    Abstract: Methods and systems for angiographic imaging with optical coherence tomography (OCT) are described using ratio-based and angiographic deviation based calculations. In using these calculations to determine motion, arbitrary interframe permutations may be used, post- calculated, non-linear results for projection visualization may be averaged, poor matches may be eliminated on an A-line by A-line basis, windowing functions may be used to improve results, partial spectrums may be used when capturing data, and a minimum intensity threshold may be used for determining which pixels to use.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: October 25, 2022
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Charles A. Reisman, Zhenguo Wang, Atsushi Kubota, Jonathan Liu
  • Publication number: 20200349701
    Abstract: Methods and systems for angiographic imaging with optical coherence tomography (OCT) are described using ratio-based and angiographic deviation based calculations. In using these calculations to determine motion, arbitrary interframe permutations may be used, post- calculated, non-linear results for projection visualization may be averaged, poor matches may be eliminated on an A-line by A-line basis, windowing functions may be used to improve results, partial spectrums may be used when capturing data, and a minimum intensity threshold may be used for determining which pixels to use.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 5, 2020
    Inventors: Charles A. Reisman, Zhenguo Wang, Atsushi Kubota, Jonathan Liu
  • Patent number: 10719933
    Abstract: Methods and systems for angiographic imaging with optical coherence tomography (OCT) are described using ratio-based and angiographic deviation based calculations. In using these calculations to determine motion, arbitrary interframe permutations may be used, post-calculated, non-linear results for projection visualization may be averaged, poor matches may be eliminated on an A-line by A-line basis, windowing functions may be used to improve results, partial spectrums may be used when capturing data, and a minimum intensity threshold may be used for determining which pixels to use.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: July 21, 2020
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Charles A. Reisman, Zhenguo Wang, Atsushi Kubota, Jonathan Liu
  • Publication number: 20200074622
    Abstract: Machine learning technologies are used to identify and separating abnormal and normal subjects and identifying possible disease types with images (e.g., optical coherence tomography (OCT) images of the eye), where the machine learning technologies are trained with only normative data. In one example, a feature or a physiological structure of an image is extracted, and the image is classified based on the extracted feature. In another example, a region of the image is masked and then reconstructed, and a similarity is determined between the reconstructed region and the original region of the image. A label (indicating an abnormality) and a score (indicating a severity) can be determined based on the classification and/or the similarity.
    Type: Application
    Filed: August 27, 2019
    Publication date: March 5, 2020
    Inventors: Qi Yang, Bisrat Zerihun, Charles A. Reisman
  • Patent number: 10497124
    Abstract: Provided is a method of processing image data and detecting a region of an image represented by the image data to be excluded from an analysis of the image. According to the method, image data captured by a medical modality is received. An evaluation of a portion of the image data representing a two-dimensional view of a subject appearing in the image is conducted to locate, in the two-dimensional view, the region to be excluded from the analysis of the image. A feature pertinent to the analysis appearing in a remaining portion of the image, that is outside of the region to be excluded from the analysis located by the evaluation, is detected.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: December 3, 2019
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Qi Yang, Charles A. Reisman
  • Publication number: 20190290117
    Abstract: An interferometric imaging apparatus utilizes a split spectrum and/or frequency filtering process for generating fundus images. According to the split spectrum process, a bandwidth of a light source is divided into sub-spectrums of light, each used to generate pixel data for the fundus image. Data capture can thus be increased by a factor corresponding to the number of sub-spectrums. According to the frequency filtering process, a frequency filter associated with a depth of interest selectively retains data corresponding to that depth.
    Type: Application
    Filed: March 22, 2018
    Publication date: September 26, 2019
    Inventors: Zhenguo Wang, Zhijia Yuan, Charles A. Reisman, Kinpui Chan
  • Patent number: 10317189
    Abstract: Optical coherence tomography light sources can be non-linear and attempts to linearize them can lead to asynchrony between the light source and A-line scans and missampling in the scans causing signal noise. Accordingly, a system and methods are provided herein to detect missampling by obtaining a plurality of interferograms; providing at least two wavenumber reference signals at different wavenumbers, wherein the wavenumber reference signals comprise attenuated or enhanced portions of each of the plurality of interferograms; aligning each of the plurality of interferograms according to one of the at least two wavenumber reference signals; and for each of the plurality of interferograms, identifying an interferogram as missampled if another of the at least two reference signals does not align with a corresponding reference signal in a statistically significant number of the plurality of interferograms. An optical element, for example, an optical notch, may be used to generate the reference signals.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: June 11, 2019
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Zhijia Yuan, Zhenguo Wang, Charles A. Reisman, Kinpui Chan
  • Patent number: 10117568
    Abstract: Geographic atrophy of the eye can be detected and measured by imaging the eye at a depth greater than the retinal pigment epithelium (RPE) at a plurality of locations of the eye, for example, using optical coherence tomography (OCT); determining a ratio of the intensities of imaging signals of a retinal layer(s) with respect to the intensity of imaging signals of a sub-RPE layer(s) at each location; determining representative values based at least in part on the determined ratios; generating a map of the representative values; and identifying diseased areas from the map. Contours and binary maps may be generated based on the identified diseased areas. The size and shape of the identified areas may be analyzed and monitored over a period of time to phenotype subjects and classify diseases.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: November 6, 2018
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Charles A. Reisman, Qi Yang
  • Patent number: 10105046
    Abstract: Optical coherence tomography (OCT) scan data of a subject is acquired over a region of interest which can include an optic disc or a macula of a retina. Layer boundaries of retinal layers are identified in the OCT scan data to facilitate measurements. In one aspect, a measurement related to ratio value between a total backscattered signal intensity of one or more target layers of the retina and a total backscattered signal intensity of one or more reference layers is computed on a location-by-location basis within a region of interest of the OCT scan data. Measurements can be collected, aggregated, analyzed, and displayed in connection with other information taken or derived from the OCT scan data.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: October 23, 2018
    Assignee: Kabushiki Kaisha TOPCON
    Inventor: Charles A. Reisman
  • Publication number: 20180247409
    Abstract: Methods and systems for angiographic imaging with optical coherence tomography (OCT) are described using ratio-based and angiographic deviation based calculations. In using these calculations to determine motion, arbitrary interframe permutations may be used, post-calculated, non-linear results for projection visualization may be averaged, poor matches may be eliminated on an A-line by A-line basis, windowing functions may be used to improve results, partial spectrums may be used when capturing data, and a minimum intensity threshold may be used for determining which pixels to use.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Inventors: Charles A. Reisman, Zhenguo Wang, Atsushi Kubota, Jonathan Liu
  • Patent number: 9984459
    Abstract: Methods and systems for angiographic imaging with optical coherence tomography (OCT) are described using ratio-based and angiographic deviation based calculations. In using these calculations to determine motion, arbitrary interframe permutations may be used, post-calculated, non-linear results for projection visualization may be averaged, poor matches may be eliminated on an A-line by A-line basis, windowing functions may be used to improve results, partial spectrums may be used when capturing data, and a minimum intensity threshold may be used for determining which pixels to use.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: May 29, 2018
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Charles A. Reisman, Zhenguo Wang, Atsushi Kubota, Jonathan Liu
  • Patent number: 9924860
    Abstract: Geographic atrophy of the eye can be detected and measured by imaging the eye at a depth greater than the retinal pigment epithelium (RPE) at a plurality of locations of the eye, for example, using optical coherence tomography (OCT); determining a ratio of the intensities of imaging signals of a retinal layer(s) with respect to the intensity of imaging signals of a sub-RPE layer(s) at each location; determining representative values based at least in part on the determined ratios; generating a map of the representative values; and identifying diseased areas from the map. Contours and binary maps may be generated based on the identified diseased areas. The size and shape of the identified areas may be analyzed and monitored over a period of time.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: March 27, 2018
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Qi Yang, Charles A. Reisman
  • Publication number: 20170065164
    Abstract: Optical coherence tomography (OCT) scan data of a subject is acquired over a region of interest which can include an optic disc or a macula of a retina. Layer boundaries of retinal layers are identified in the OCT scan data to facilitate measurements. In one aspect, a measurement related to ratio value between a total backscattered signal intensity of one or more target layers of the retina and a total backscattered signal intensity of one or more reference layers is computed on a location-by-location basis within a region of interest of the OCT scan data. Measurements can be collected, aggregated, analyzed, and displayed in connection with other information taken or derived from the OCT scan data.
    Type: Application
    Filed: November 18, 2016
    Publication date: March 9, 2017
    Inventor: Charles A. Reisman
  • Publication number: 20170065163
    Abstract: Geographic atrophy of the eye can be detected and measured by imaging the eye at a depth greater than the retinal pigment epithelium (RPE) at a plurality of locations of the eye, for example, using optical coherence tomography (OCT); determining a ratio of the intensities of imaging signals of a retinal layer(s) with respect to the intensity of imaging signals of a sub-RPE layer(s) at each location; determining representative values based at least in part on the determined ratios; generating a map of the representative values; and identifying diseased areas from the map. Contours and binary maps may be generated based on the identified diseased areas. The size and shape of the identified areas may be analyzed and monitored over a period of time.
    Type: Application
    Filed: November 18, 2016
    Publication date: March 9, 2017
    Inventors: Qi Yang, Charles A. Reisman
  • Patent number: 9526412
    Abstract: Geographic atrophy of the eye can be detected and measured by imaging the eye at a depth greater than the retinal pigment epithelium (RPE) at a plurality of locations of the eye, for example, using optical coherence tomography (OCT); determining a ratio of the intensities of imaging signals of a retinal layer(s) with respect to the intensity of imaging signals of a sub-RPE layer(s) at each location; determining representative values based at least in part on the determined ratios; generating a map of the representative values; and identifying diseased areas from the map. Contours and binary maps may be generated based on the identified diseased areas. The size and shape of the identified areas may be analyzed and monitored over a period of time.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 27, 2016
    Assignee: KABUSHIKI KAISHA TOPCON
    Inventors: Qi Yang, Charles A. Reisman
  • Patent number: 9517005
    Abstract: Optical coherence tomography (OCT) scan data of a subject is acquired over a region of interest which can include an optic disc or a macula of a retina. Layer boundaries of retinal layers are identified in the OCT scan data to facilitate measurements. In one aspect, a measurement related to ratio value between a total backscattered signal intensity of one or more target layers of the retina and a total backscattered signal intensity of one or more reference layers is computed on a location-by-location basis within a region of interest of the OCT scan data. Measurements can be collected, aggregated, analyzed, and displayed in connection with other information taken or derived from the OCT scan data.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: December 13, 2016
    Assignee: KABUSHIKI KAISHA TOPCON
    Inventor: Charles A. Reisman
  • Publication number: 20160307314
    Abstract: Methods and systems for angiographic imaging with optical coherence tomography (OCT) are described using ratio-based and angiographic deviation based calculations. In using these calculations to determine motion, arbitrary interframe permutations may be used, post-calculated, non-linear results for projection visualization may be averaged, poor matches may be eliminated on an A-line by A-line basis, windowing functions may be used to improve results, partial spectrums may be used when capturing data, and a minimum intensity threshold may be used for determining which pixels to use.
    Type: Application
    Filed: April 5, 2016
    Publication date: October 20, 2016
    Inventors: Charles A. Reisman, Zhenguo Wang, Atsushi Kubota, Jonathan Liu
  • Publication number: 20160206190
    Abstract: Geographic atrophy of the eye can be detected and measured by imaging the eye at a depth greater than the retinal pigment epithelium (RPE) at a plurality of locations of the eye, for example, using optical coherence tomography (OCT); determining a ratio of the intensities of imaging signals of a retinal layer(s) with respect to the intensity of imaging signals of a sub-RPE layer(s) at each location; determining representative values based at least in part on the determined ratios; generating a map of the representative values; and identifying diseased areas from the map. Contours and binary maps may be generated based on the identified diseased areas. The size and shape of the identified areas may be analyzed and monitored over a period of time to phenotype subjects and classify diseases.
    Type: Application
    Filed: January 7, 2016
    Publication date: July 21, 2016
    Inventors: Charles A. Reisman, Qi Yang
  • Publication number: 20150342451
    Abstract: Optical coherence tomography (OCT) scan data of a subject is acquired over a region of interest which can include an optic disc or a macula of a retina. Layer boundaries of retinal layers are identified in the OCT scan data to facilitate measurements. In one aspect, a measurement related to ratio value between a total backscattered signal intensity of one or more target layers of the retina and a total backscattered signal intensity of one or more reference layers is computed on a location-by-location basis within a region of interest of the OCT scan data. Measurements can be collected, aggregated, analyzed, and displayed in connection with other information taken or derived from the OCT scan data.
    Type: Application
    Filed: August 13, 2015
    Publication date: December 3, 2015
    Inventor: Charles A. Reisman