Patents by Inventor Charles A. Renneberg
Charles A. Renneberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240183937Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of electronically steerable receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength, has an aperture, and is configured to generate a receive beam pattern. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength, has an aperture that is significantly smaller than the aperture of the sparse receive antenna, and is configured to filter, spatially, the receive beam pattern.Type: ApplicationFiled: December 5, 2023Publication date: June 6, 2024Applicant: Echodyne Corp.Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
-
Patent number: 11879989Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of electronically steerable receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.Type: GrantFiled: June 16, 2020Date of Patent: January 23, 2024Assignee: Echodyne Corp.Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
-
Publication number: 20240014546Abstract: In an embodiment, an antenna unit includes a coupler, a phase-shifting modulator, and an antenna element. The coupler has first and second input-output ports, a coupled port, and an isolated port. The phase-shifting modulator includes a transmission medium coupled to the coupled port, a reflector, control nodes, and active devices each having a respective first device port coupled to a respective location of the transmission medium, a respective second device port coupled to the reflector, and a respective control port coupled to a respective one of the control nodes. And the antenna element is coupled to the phase-shifting modulator via the isolated port.Type: ApplicationFiled: March 13, 2023Publication date: January 11, 2024Applicant: Echodyne Corp.Inventors: Tom Driscoll, William F. Graves, JR., Jason E. Jerauld, Nathan Ingle Landy, Charles A. Renneberg, Benjamin Sikes, Yianni Tzanidis, Felix D. Yuen, Nicholas K. Brune
-
Patent number: 11626659Abstract: An embodiment an antenna unit of an antenna array includes a signal coupler, a phase-shifting modulator, and an antenna element. The signal coupler has a first input-output port, a second input-output port, and a coupled port. The phase-shifting modulator is coupled to the coupled port of the signal coupler, and the antenna element is coupled to the phase-shifting modulator via a connection remote from the signal coupler, or via an isolated port of the signal coupler. The phase-shifting modulator is configured for both relatively low signal loss and relatively low power consumption such that the antenna array can have significantly lower C-SWAP metrics than a conventional phased array while retaining the higher performance metrics of a conventional phased array.Type: GrantFiled: May 3, 2019Date of Patent: April 11, 2023Assignee: Echodyne Corp.Inventors: Tom Driscoll, William F. Graves, Jr., Jason E. Jerauld, Nathan Ingle Landy, Charles A. Renneberg, Benjamin Sikes, Yianni Tzanidis, Felix D. Yuen, Nicholas K. Brune
-
Patent number: 11515625Abstract: According to an embodiment, an antenna includes a conductive antenna element, a voltage-bias conductor, and a polarization-compensation conductor. The conductive antenna element is configured to radiate a first signal having a first polarization, and the voltage-bias conductor is coupled to a side of the antenna element and is configured to radiate a second signal having a second polarization that is different from the first polarization. And the polarization-compensating conductor is coupled to an opposite side of the antenna element and is configured to radiate third a signal having a third polarization that is approximately the same as the second polarization and that destructively interferes with the second signal. Such an antenna can be configured to reduce cross-polarization of the signals that its antenna elements radiate.Type: GrantFiled: October 12, 2018Date of Patent: November 29, 2022Assignee: Echodyne Corp.Inventors: Tom Driscoll, Nathan Ingle Landy, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
-
Patent number: 11211716Abstract: An embodiment of an antenna includes first and second transmission lines, first antenna elements, and second antenna elements. The first transmission line is configured to guide a first signal such that the first signal has a characteristic of a first value, and the second transmission line is configured to guide a second signal such that the second signal has the same characteristic but of a second value that is different than the first value. The first antenna elements are each disposed adjacent to the first transmission line and are each configured to radiate the first signal in response to a respective first control signal, and the second antenna elements are each disposed adjacent to the second transmission line and are each configured to radiate the second signal in response to a respective second control signal. Such an antenna can have better main-beam and side-lobe characteristics, and a better SIR, than prior antennas.Type: GrantFiled: August 26, 2019Date of Patent: December 28, 2021Assignee: Echodyne Corp.Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl, Felix D. Yuen
-
Patent number: 11163037Abstract: An embodiment of an antenna array includes a transmit antenna and a receive antenna. The transmit antenna has, in one dimension, a first size, and has, in another dimension that is approximately orthogonal to the one dimension, a second size that is greater than the first size. And the receive antenna has, in approximately the one dimension, a third size that is greater than the first size, and has, in approximately the other dimension, a fourth size that is less than the second size. For example, such an antenna array, and a radar system that incorporates the antenna array, can provide a high Rayleigh resolution (i.e., a narrow Half Power Beam Width (HPBW)) with significantly reduced aliasing as compared to prior antenna arrays and radar systems for a given number of antenna-array channels.Type: GrantFiled: June 26, 2018Date of Patent: November 2, 2021Assignee: Echodyne Corp.Inventors: Adam Bily, Tom Driscoll, John Desmond Hunt, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
-
Patent number: 11128035Abstract: In an embodiment, an antenna unit for an antenna array allows shifting the phase of a radiated or received signal without the need for a phase shifter, and includes an antenna element, switching devices, and signal couplers. The antenna element includes at least one section and signal ports each electrically isolated from each other and from each of the at least one section. The switching devices are each configured to couple a respective one of the signal ports to one of the at least one section in response to a respective control signal, and the signal couplers are each configured to couple a respective one of the signal ports to a respective location of a respective transmission medium.Type: GrantFiled: April 19, 2019Date of Patent: September 21, 2021Assignee: Echodyne Corp.Inventors: Tom Driscoll, Nathan Ingle Landy, Robert Tilman Worl, Felix D. Yuen, Charles A. Renneberg, Yianni Tzanidis
-
Antenna array having a different beam-steering resolution in one dimension than in another dimension
Patent number: 11101572Abstract: In an embodiment, an antenna includes a one-dimensional array of antenna cells, a signal feed, and signal couplers. The antenna cells are each spaced from an adjacent antenna cell by less than one half a wavelength at which the antenna cells are configured to transmit and to receive, are configured to generate an array beam that is narrower in a dimension than in an orthogonal dimension, and are configured to steer the array beam in the dimension. And the signal couplers are each configured to couple a respective one of the antenna cells to the signal feed in response a respective control signal having an active level. For example, the antenna cells can be arranged such that a straight line intersects their geometric centers.Type: GrantFiled: September 7, 2018Date of Patent: August 24, 2021Assignee: Echodyne Corp.Inventors: Adam Bily, Tom Driscoll, John Desmond Hunt, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl -
Publication number: 20200350665Abstract: An embodiment an antenna unit of an antenna array includes a signal coupler, a phase-shifting modulator, and an antenna element. The signal coupler has a first input-output port, a second input-output port, and a coupled port. The phase-shifting modulator is coupled to the coupled port of the signal coupler, and the antenna element is coupled to the phase-shifting modulator via a connection remote from the signal coupler, or via an isolated port of the signal coupler. The phase-shifting modulator is configured for both relatively low signal loss and relatively low power consumption such that the antenna array can have significantly lower C-SWAP metrics than a conventional phased array while retaining the higher performance metrics of a conventional phased array.Type: ApplicationFiled: May 3, 2019Publication date: November 5, 2020Applicant: Echodyne Corp.Inventors: Tom Driscoll, William F. Graves, JR., Jason E. Jerauld, Nathan Ingle Landy, Charles A. Renneberg, Benjamin Sikes, Yianni Tzanidis, Felix D. Yuen, Nicholas K. Brune
-
Publication number: 20200335859Abstract: In an embodiment, an antenna unit for an antenna array allows shifting the phase of a radiated or received signal without the need for a phase shifter, and includes an antenna element, switching devices, and signal couplers. The antenna element includes at least one section and signal ports each electrically isolated from each other and from each of the at least one section. The switching devices are each configured to couple a respective one of the signal ports to one of the at least one section in response to a respective control signal, and the signal couplers are each configured to couple a respective one of the signal ports to a respective location of a respective transmission medium.Type: ApplicationFiled: April 19, 2019Publication date: October 22, 2020Applicant: Echodyne Corp.Inventors: Tom Driscoll, Nathan Ingle Landy, Robert Tilman Worl, Felix D. Yuen, Charles A. Renneberg, Yianni Tzanidis
-
Publication number: 20200309900Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of electronically steerable receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.Type: ApplicationFiled: June 16, 2020Publication date: October 1, 2020Applicant: Echodyne Corp.Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
-
Patent number: 10684354Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.Type: GrantFiled: December 5, 2017Date of Patent: June 16, 2020Assignee: Echodyne Corp.Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
-
Publication number: 20190379133Abstract: An embodiment of an antenna includes first and second transmission lines, first antenna elements, and second antenna elements. The first transmission line is configured to guide a first signal such that the first signal has a characteristic of a first value, and the second transmission line is configured to guide a second signal such that the second signal has the same characteristic but of a second value that is different than the first value. The first antenna elements are each disposed adjacent to the first transmission line and are each configured to radiate the first signal in response to a respective first control signal, and the second antenna elements are each disposed adjacent to the second transmission line and are each configured to radiate the second signal in response to a respective second control signal. Such an antenna can have better main-beam and side-lobe characteristics, and a better SIR, than prior antennas.Type: ApplicationFiled: August 26, 2019Publication date: December 12, 2019Applicant: Echodyne Corp.Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl, Felix D. Yuen
-
Patent number: 10396468Abstract: An embodiment of an antenna includes first and second transmission lines, first antenna elements, and second antenna elements. The first transmission line is configured to guide a first signal such that the first signal has a characteristic of a first value, and the second transmission line is configured to guide a second signal such that the second signal has the same characteristic but of a second value that is different than the first value. The first antenna elements are each disposed adjacent to the first transmission line and are each configured to radiate the first signal in response to a respective first control signal, and the second antenna elements are each disposed adjacent to the second transmission line and are each configured to radiate the second signal in response to a respective second control signal. Such an antenna can have better main-beam and side-lobe characteristics, and a better SIR, than prior antennas.Type: GrantFiled: August 18, 2016Date of Patent: August 27, 2019Assignee: Echodyne CorpInventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl, Felix D. Yuen
-
Publication number: 20190115651Abstract: According to an embodiment, an antenna includes a conductive antenna element, a voltage-bias conductor, and a polarization-compensation conductor. The conductive antenna element is configured to radiate a first signal having a first polarization, and the voltage-bias conductor is coupled to a side of the antenna element and is configured to radiate a second signal having a second polarization that is different from the first polarization. And the polarization-compensating conductor is coupled to an opposite side of the antenna element and is configured to radiate third a signal having a third polarization that is approximately the same as the second polarization and that destructively interferes with the second signal. Such an antenna can be configured to reduce cross-polarization of the signals that its antenna elements radiate.Type: ApplicationFiled: October 12, 2018Publication date: April 18, 2019Applicant: Echodyne CorpInventors: Tom Driscoll, Nathan Ingle Landy, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
-
ANTENNA ARRAY HAVING A DIFFERENT BEAM-STEERING RESOLUTION IN ONE DIMENSION THAN IN ANOTHER DIMENSION
Publication number: 20190074600Abstract: In an embodiment, an antenna includes a one-dimensional array of antenna cells, a signal feed, and signal couplers. The antenna cells are each spaced from an adjacent antenna cell by less than one half a wavelength at which the antenna cells are configured to transmit and to receive, are configured to generate an array beam that is narrower in a dimension than in an orthogonal dimension, and are configured to steer the array beam in the dimension. And the signal couplers are each configured to couple a respective one of the antenna cells to the signal feed in response a respective control signal having an active level. For example, the antenna cells can be arranged such that a straight line intersects their geometric centers.Type: ApplicationFiled: September 7, 2018Publication date: March 7, 2019Applicant: Echodyne CorpInventors: Adam Bily, Tom Driscoll, John Desmond Hunt, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl -
Publication number: 20180372837Abstract: An embodiment of an antenna array includes a transmit antenna and a receive antenna. The transmit antenna has, in one dimension, a first size, and has, in another dimension that is approximately orthogonal to the one dimension, a second size that is greater than the first size. And the receive antenna has, in approximately the one dimension, a third size that is greater than the first size, and has, in approximately the other dimension, a fourth size that is less than the second size. For example, such an antenna array, and a radar system that incorporates the antenna array, can provide a high Rayleigh resolution (i.e., a narrow Half Power Beam Width (HPBW)) with significantly reduced aliasing as compared to prior antenna arrays and radar systems for a given number of antenna-array channels.Type: ApplicationFiled: June 26, 2018Publication date: December 27, 2018Applicant: Echodyne CorpInventors: Adam Bily, Tom Driscoll, John Desmond Hunt, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
-
Publication number: 20180156891Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.Type: ApplicationFiled: December 5, 2017Publication date: June 7, 2018Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
-
Publication number: 20180054004Abstract: An embodiment of an antenna includes first and second transmission lines, first antenna elements, and second antenna elements. The first transmission line is configured to guide a first signal such that the first signal has a characteristic of a first value, and the second transmission line is configured to guide a second signal such that the second signal has the same characteristic but of a second value that is different than the first value. The first antenna elements are each disposed adjacent to the first transmission line and are each configured to radiate the first signal in response to a respective first control signal, and the second antenna elements are each disposed adjacent to the second transmission line and are each configured to radiate the second signal in response to a respective second control signal. Such an antenna can have better main-beam and side-lobe characteristics, and a better SIR, than prior antennas.Type: ApplicationFiled: August 18, 2016Publication date: February 22, 2018Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl, Felix D. Yuen