Patents by Inventor Charles A. Swenson

Charles A. Swenson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090108969
    Abstract: An electromagnet coil comprising Litz wire windings and power leads without break or interruption is cooled by a perfluorinated liquid by sensible and phase change heat transfer in a closed system. The electromagnet coil may be housed in a pentagonal or hexagonal pressure vessel to allow high packing densities in an array or helmet configuration. The helmet is then lowered over a human cranium for transcranial electromagnetic stimulation. The Litz wire windings reduce the power and voltages required for operation, yet allow production of over 2 T of accurately directed magnetic pulses for direct nerve or neuron stimulation. The perfluorinated liquid maintains the temperature of the helmet to less than 35-40° C., ensuring a comfortable temperature device for a human test subject. A utility cable connects the helmet to an external cooling unit and an external power supply.
    Type: Application
    Filed: October 31, 2007
    Publication date: April 30, 2009
    Applicant: LOS ALAMOS NATIONAL SECURITY
    Inventors: James Rae Sims, Charles A. Swenson, Curtt N. Ammerman, Josef B. Schillig
  • Patent number: 7015779
    Abstract: A wide bore, high field superconducting magnet. The superconducting magnet has a plurality of superconducting coils impregnated with epoxy and nested within each other. An innermost one of the nested coils has a bore therethrough that defines a bore width of the magnet. The bore width is greater than approximately 100 millimeters. The nested coils are electrically connected in series and cooled to an operating temperature less than approximately 4 degrees K. The magnet also has external reinforcements on the coils that are applied prior to impregnating the coils with epoxy. An active protection circuit protects the coils in response to a quench in the magnet. The protection circuit includes heater elements positioned in thermal contact with the coils prior to impregnating the coils with epoxy. The magnet further has lead supports for supporting the lead wires with epoxy that extend from the coils.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: March 21, 2006
    Assignee: Florida State University
    Inventors: W. Denis Markiewicz, Iain R. Dixon, Charles A. Swenson, W. Scott Marshall, Robert P. Walsh, Thomas Painter, Steven van Sciver
  • Publication number: 20040162222
    Abstract: A wide bore, high field superconducting magnet. The superconducting magnet has a plurality of superconducting coils impregnated with epoxy and nested within each other. An innermost one of the nested coils has a bore therethrough that defines a bore width of the magnet. The bore width is greater than approximately 100 millimeters. The nested coils are electrically connected in series and cooled to an operating temperature less than approximately 4 degrees K. The magnet also has external reinforcements on the coils that are applied prior to impregnating the coils with epoxy. An active protection circuit protects the coils in response to a quench in the magnet. The protection circuit includes heater elements positioned in thermal contact with the coils prior to impregnating the coils with epoxy. The magnet further has lead supports for supporting the lead wires with epoxy that extend from the coils.
    Type: Application
    Filed: February 12, 2004
    Publication date: August 19, 2004
    Applicant: Florida State University Research Foundation
    Inventors: W. Denis Markiewicz, Iain R. Dixon, Charles A. Swenson, W. Scott Marshall, Robert P. Walsh, Thomas Painter, Steven van Sciver
  • Patent number: 6735848
    Abstract: Method of manufacture a wide bore, high field superconducting magnet. The superconducting magnet has a plurality of superconducting coils impregnated with epoxy and nested within each other. An innermost one of the nested coils has a bore therethrough that defines a bore width of the magnet. The bore width is greater than approximately 100 millimeters. The nested coils are electrically connected in series and cooled to an operating temperature less than approximately 4 degrees K. The magnet also has external reinforcements on the coils that are applied prior to impregnating the coils with epoxy. An active protection circuit protects the coils in response to a quench in the magnet. The protection circuit includes heater elements positioned in thermal contact with the coils prior to impregnating the coils with epoxy. The magnet further has lead supports for supporting the lead wires with epoxy that extend from the coils.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: May 18, 2004
    Assignee: FSU Research Foundation, Inc.
    Inventors: W. Denis Markiewicz, Iain R. Dixon, Charles A. Swenson, W. Scott Marshall, Robert P. Walsh, Thomas Painter, Steven van Van Sciver
  • Patent number: 5195976
    Abstract: An apparatus for thermal regulation, or temperature control of intravenous fluid. The apparatus includes four subassemblies to control intravenous fluid temperature during rapid time varying fluctuations in fluid flow rates independent of ambient air temperature and initial fluid temperature. The first subassembly is an intravenous infusion subassembly containing a fluid reservoir, flexible tubing and a syringe for injecting fluid into a human. The second subassembly is a disposable heat exchange subassembly containing a wire heat exchanger and temperature and flow sensors. The heat exchanger is fabricated into the flexible tubing of the infusion subassembly. The third subassembly is a controller subassembly including a microprocessor system to control the heat exchange subassembly and power supplies.
    Type: Grant
    Filed: February 10, 1992
    Date of Patent: March 23, 1993
    Assignee: Houston Advanced Research Center
    Inventor: Charles A. Swenson
  • Patent number: 5108372
    Abstract: An apparatus for thermal regulation, or temperature control of intravenous fluid. The apparatus includes four subassemblies to control intravenous fluid temperature during rapid time varying fluctuations in fluid flow rates independent of ambient air temperature and initial fluid temperature. The first subassembly is an intravenous infusion subassembly containing a fluid reservoir, flexible tubing and a syringe for injecting fluid into a human. The second subassembly is a disposable heat exchange subassembly containing a wire heat exchanger and temperature and flow sensors. The heat exchanger is fabricated into the flexible tubing of the infusion subassembly. The third subassembly is a controller subassembly including a microprocessor system to control the heat exchange subassembly and power supplies.
    Type: Grant
    Filed: December 12, 1990
    Date of Patent: April 28, 1992
    Assignee: Houston Advanced Research Center
    Inventor: Charles A. Swenson