Patents by Inventor Charles A. Weiss

Charles A. Weiss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240363628
    Abstract: Gate-all-around integrated circuit structures having adjacent island structures are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A first vertical arrangement of horizontal nanowires is above a first fin protruding from the semiconductor substrate. A channel region of the first vertical arrangement of horizontal nanowires is electrically isolated from the fin. A second vertical arrangement of horizontal nanowires is above a second fin protruding from the semiconductor substrate. A channel region of the second vertical arrangement of horizontal nanowires is electrically isolated from the second fin. The semiconductor island is between the first vertical arrangement of horizontal nanowires and the second vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: July 9, 2024
    Publication date: October 31, 2024
    Inventors: Leonard P. GULER, William HSU, Biswajeet GUHA, Martin WEISS, Apratim DHAR, William T. BLANTON, John H. IRBY, IV, James F. BONDI, Michael K. HARPER, Charles H. WALLACE, Tahir GHANI, Benedict A. SAMUEL, Stefan DICKERT
  • Patent number: 12068314
    Abstract: Gate-all-around integrated circuit structures having adjacent island structures are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A first vertical arrangement of horizontal nanowires is above a first fin protruding from the semiconductor substrate. A channel region of the first vertical arrangement of horizontal nanowires is electrically isolated from the fin. A second vertical arrangement of horizontal nanowires is above a second fin protruding from the semiconductor substrate. A channel region of the second vertical arrangement of horizontal nanowires is electrically isolated from the second fin. The semiconductor island is between the first vertical arrangement of horizontal nanowires and the second vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: August 20, 2024
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, William Hsu, Biswajeet Guha, Martin Weiss, Apratim Dhar, William T. Blanton, John H. Irby, IV, James F. Bondi, Michael K. Harper, Charles H. Wallace, Tahir Ghani, Benedict A. Samuel, Stefan Dickert
  • Patent number: 12017574
    Abstract: A system of devices is provided to cooperate to tie-down a load and to cover the load with a tarp or cover. A knob with an optional locking base provides an anchor point to wrap and tie a tarp in the tarp anchoring system. The knob has numerous variations to accommodate attaching points and accessory characteristics. A compressing device secures the tarp over the knob. Two pieces move and lock within one another with sufficient clearance to receive the knob and the tarp. The knob having sufficient curvature to retain the compressing device when locked. Various mid-spanning hooking members cooperate with cords, straps, or ropes for a myriad of cargo lashing functionality and to receive the anchoring point. When used in combination, a user can employ the system to generate a web of load supports with a network of hubs and modes of attachment.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: June 25, 2024
    Inventor: Charles Weiss Sutliff, II
  • Patent number: 8859105
    Abstract: A coating for a reinforcing material, such as metal rebar, that increases the adhesion between the reinforcing material and a matrix, such as a cement-based mortar or concrete, in which the reinforcing material is embedded. The coating may comprise a glass frit mixed with a refractory material, such as dry Type I-II portland cement. The coating is bonded, typically by heat, to the surface of the reinforcing material. The reaction of the refractory component, e.g., portland cement, when the reinforcement, e.g., metal re-bar, is embedded in a matrix, e.g., fresh mortar or concrete, prevents the formation of soft precipitates at the interface of the matrix and its reinforcement. One coating comprises portland cement Type I-II combined with a commercial alkali-resistant glass frit. This coating is applied to a steel rebar and fired to bond to the rebar.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: October 14, 2014
    Inventors: Donna C. Day, Melvin C. Sykes, Charles A. Weiss, Jr., Philip G. Malone, Earl H. Baugher, Jr.
  • Publication number: 20110262756
    Abstract: A coating for a reinforcing material, such as metal rebar, that increases the adhesion between the reinforcing material and a matrix, such as a cement-based mortar or concrete, in which the reinforcing material is embedded. The coating may comprise a glass frit mixed with a refractory material, such as dry Type I-II portland cement. The coating is bonded, typically by heat, to the surface of the reinforcing material. The reaction of the refractory component, e.g., portland cement, when the reinforcement, e.g., metal re-bar, is embedded in a matrix, e.g., fresh mortar or concrete, prevents the formation of soft precipitates at the interface of the matrix and its reinforcement. One coating comprises portland cement Type I-II combined with a commercial alkali-resistant glass frit. This coating is applied to a steel rebar and fired to bond to the rebar.
    Type: Application
    Filed: July 7, 2011
    Publication date: October 27, 2011
    Inventors: Donna C. Day, Melvin C. Sykes, Charles A. Weiss, JR., Philip G. Malone, Earl H. Baugher, JR.
  • Publication number: 20110100265
    Abstract: A “green process” and system employing a first operation of electrophoresis in a liquid suspending selected solids to introduce the suspended solid particles as micro- or nano-particles, or both, into pore spaces of a porous non-conductive medium. A second operation uses electro-transport to move ions of solids into small pore spaces inaccessible via electrophoresis alone to grow solids in these smaller pore spaces to a size that may fill them, thus increasing the density and strength of the medium. The process yields a material that has improved strength, reduced porosity, high density and, in select applications, resistance to formation of mildew, mold, fungus and the like. Certain applications also enable decorative colors and florescence to be introduced to the media. Materials made from the process include high strength concrete construction panels, “backer boards,” work surfaces, counter tops, complex decorative configurations, strong thin walled items, and the like.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 5, 2011
    Inventors: Philip G. Malone, Charles A. Weiss, JR., Sean W. Morefield, Vincent F. Hock
  • Publication number: 20100247860
    Abstract: A method of coarse enameling material, such as the surface of conventional rebar, which increases adhesion between the surface and a matrix, such as a cement-based mortar or concrete, in which the material is embedded. In one embodiment, a glass fit is fired onto a surface to achieve an enamel finish, the finish is then cooled and heat softened. A refractory material, such as dry portland cement, is applied to the heat softened enamel, and the resultant coarse coating is then fired and cooled to produce a final hard coarse enameled surface. The reaction of the refractory component in the coarse enameled surface upon insertion in fresh mortar or concrete prevents the formation of soft precipitates at the interface of the cementitious matrix and the coarse-enameled reinforcement. One embodiment involves adding portland cement Type I-II to a softened glass frit as a final coating over an initial base coating that if fired on the steel to prevent corrosion of the underlying steel.
    Type: Application
    Filed: June 4, 2010
    Publication date: September 30, 2010
    Inventors: Melvin C. Sykes, Donna C. Day, Philip G. Malone, Charles A. Weiss, JR., Earl H. Baugher, JR.
  • Patent number: 7763155
    Abstract: An Electro-Osmotic Pulse (EOP) system is used to dewater structure, both natural and manmade. Preferably, the system employs durable, dimensionally stable anodes affixed to structure in a configuration designed to maximize electrical contact with the structure and minimize electrode gas generation. The anodes and cathodes are attached to a DC power supply that provides a voltage potential between them. DC power is cycled until the structure has been sufficiently treated. Select embodiments employ perforated metal pipes as cathodes for the purpose of transport and drainage of fluids. In select embodiments of the present invention, the cathodes are connected to variable resistors designed to reduce opportunity for corrosion of buried metal objects in the vicinity of the EOP system. Select embodiments employ a pre-specified pulse train of DC voltage pulses to migrate water from under a crawl space while moving available cations in the soil. Select embodiments also protect large structures such as concrete dams.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: July 27, 2010
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Philip G. Malone, Charles A. Weiss, Jr., Orange S. Marshall, Michael K. McInerney, Vincent F. Hock, Jr., Charles P. Marsh, Sean W. Morefield
  • Patent number: 7571912
    Abstract: A stable fire retardant mixture for use in a backstop for decelerating and trapping projectiles. The backstop generally includes a support structure having an inclined surface and the stable fire retardant mixture serving as a projectile trapping medium disposed on the inclined surface. The projectile trapping medium is a resilient granular material intimately mixed with a hydrated super absorbent polymer (SAP) gel and additives. Preferably, the support structure is made of a shock absorbing, foamed, fiber-reinforced concrete, such as SACON®. In embodiments, the support structure also includes an enclosure. The additives control alkalinity, chemically stabilize the mixture, prolong life of the mixture, retard mold formation and bacterial growth and prevent leaching of heavy metals.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: August 11, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Steven L. Larson, Charles A. Weiss, Joe G. Tom, Philip G. Malone, Edward J. Fransen
  • Patent number: 7419327
    Abstract: A method for fabricating and forming a continuous covered area, such as a sidewalk or patio, employing vertically interlocking tessellated components. One embodiment, termed PORTAPAVE™, achieves this interlocking via an array of uniquely configured two-sectioned pavers. Each paver has a first section of a first shape and a second section of a second shape impressed upon the first section and bonded together. In one embodiment, first sections of pavers are installed in a bottom layer to form a cavity between them having the same shape as the second section of a paver that is inverted onto the pavers of the bottom layer, thus providing a top layer. Each inverted paver in this top layer is fitted to interlock in that cavity formed between the un-inverted pavers in the bottom layer.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: September 2, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Charles A. Weiss, Jr.
  • Publication number: 20080168721
    Abstract: A barrier to fluid passage is embedded within, instead of atop, porous material to retain the durability of the surface of the porous material. In one embodiment, a thin set mortar is applied to a concrete slab. A pleated metal foil is pressed into the wet mortar and a bond is established. The mortar is allowed to set and a top, or finish, section of concrete is then poured over the foil and finished conventionally. Provisions are made for sealing expansion joints in concrete slab floors and at the juncture of floor and wall. The foil may be provided in multiple layers to provide a mechanical bond via mortar oozing through perforations or along pleats in each of the top and bottoms layers, while providing a solid layer through which a fluid will not pass, at least in one direction.
    Type: Application
    Filed: April 26, 2007
    Publication date: July 17, 2008
    Inventors: Michael K. McInerney, Sean W. Morefield, Vincent F. Hock, Philip G. Malone, Charles A. Weiss
  • Publication number: 20080118307
    Abstract: A method for fabricating and forming a continuous covered area, such as a sidewalk or patio, employing vertically interlocking tessellated components. One embodiment, termed PORTAPAVE™, achieves this interlocking via an array of uniquely configured two-sectioned pavers. Each paver has a first section of a first shape and a second section of a second shape impressed upon the first section and bonded together. In one embodiment, first sections of pavers are installed in a bottom layer to form a cavity between them having the same shape as the second section of a paver that is inverted onto the pavers of the bottom layer, thus providing a top layer. Each inverted paver in this top layer is fitted to interlock in that cavity formed between the un-inverted pavers in the bottom layer.
    Type: Application
    Filed: November 22, 2006
    Publication date: May 22, 2008
    Inventor: Charles A. Weiss
  • Patent number: D911831
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: March 2, 2021
    Inventor: Charles Weiss Sutliff, II
  • Patent number: D925344
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: July 20, 2021
    Inventor: Charles Weiss Sutliff, II
  • Patent number: D929215
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: August 31, 2021
    Inventor: Charles Weiss Sutliff, II
  • Patent number: D929216
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: August 31, 2021
    Inventor: Charles Weiss Sutliff, II
  • Patent number: D929217
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: August 31, 2021
    Inventor: Charles Weiss Sutliff, II
  • Patent number: D941127
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: January 18, 2022
    Inventor: Charles Weiss Sutliff, II
  • Patent number: D1032343
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: June 25, 2024
    Inventor: Charles Weiss Sutliff, II
  • Patent number: D1032344
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: June 25, 2024
    Inventor: Charles Weiss Sutliff, II