Patents by Inventor Charles Boiteau

Charles Boiteau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10520458
    Abstract: The present invention provides a method and apparatus for creating test strips that may be identified based on differences in electrical conduction or resistance between contact point on the test strip. This is achieved by creating a base test strip with contact points that may be connected to other contact points by an electrical connection. These base test strips may be modified to create a difference in electrical conductivity between contact points, or a contact point may be eliminated. This modification can be used to distinguish different types of test strips based on electrical signature. Additionally, the base test strip may be created such that multiple modifications are possible to distinguish numerous characteristics of test strips.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: December 31, 2019
    Assignee: AgaMatrix, Inc.
    Inventors: Charles Boiteau, Martin Forest, Sridhar Iyengar, Baoguo Wei
  • Patent number: 10488359
    Abstract: A test meter for receiving a test strip comprises: (a) a housing; (b) electronic circuitry disposed within the housing and (c) a strip port connector connected to the electronic circuitry and extending to an opening in the housing, said strip port connector connecting the electronic circuitry with a received test strip. The strip port connector contains a pair of top and bottom contacts, said top and bottom contacts having a proximal end and a distal end and a central contact portion, the top and bottom contacts of the pair are transversely aligned with one another; and the distal ends of the top and bottom contacts are separated or separable from one another by insertion of a test strip between the opposed contacts. The contacts and the meter are adapted to permit detection of faulty contacts and/or coding associated with an inserted test strip.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: November 26, 2019
    Assignee: AgaMatrix, Inc.
    Inventors: Sridhar Iyengar, Charles Boiteau, Martin Forest, Colin Butters
  • Patent number: 10288577
    Abstract: A test strip with an incorporated optical waveguide and deflectors punched through the optical waveguide allows light to exit through a layer of the test strip and be detected by a photo detector. Using light and a photodetector, these uniquely coded strips are identified. The waveguide can be constructed by sandwiching two layers of the test strip around a light transmissible layer. This configuration allows light to be transmitted through the test strip and out the other end, as well as allowing some light to escape the deflector. This light is detected by a photodetector mounted in the analyte test meter. The deflectors may be placed in patterns such that detection of this light indicates certain characteristics of the strip, such as non-counterfeit, regional identification, type of analyte tested, and coding information.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: May 14, 2019
    Assignee: AgaMatrix, Inc.
    Inventors: Sridhar Iyengar, Ian Harding, Charles Boiteau, Colin Butters
  • Publication number: 20170205370
    Abstract: A test strip with an incorporated optical waveguide and deflectors punched through the optical waveguide allows light to exit through a layer of the test strip and be detected by a photo detector. Using light and a photodetector, these uniquely coded strips are identified. The waveguide can be constructed by sandwiching two layers of the test strip around a light transmissible layer. This configuration allows light to be transmitted through the test strip and out the other end, as well as allowing some light to escape the deflector. This light is detected by a photodetector mounted in the analyte test meter. The deflectors may be placed in patterns such that detection of this light indicates certain characteristics of the strip, such as non-counterfeit, regional identification, type of analyte tested, and coding information.
    Type: Application
    Filed: April 3, 2017
    Publication date: July 20, 2017
    Applicant: AgaMatrix, Inc.
    Inventors: Sridhar Iyengar, Ian Harding, Charles Boiteau, Colin Butters
  • Patent number: 9632056
    Abstract: A test strip with an incorporated optical waveguide and deflectors punched through the optical waveguide allows light to exit through a layer of the test strip and be detected by a photo detector. Using light and a photodetector, these uniquely coded strips are identified. The waveguide can be constructed by sandwiching two layers of the test strip around a light transmissible layer. This configuration allows light to be transmitted through the test strip and out the other end, as well as allowing some light to escape the deflector. This light is detected by a photodetector mounted in the analyte test meter. The deflectors may be placed in patterns such that detection of this light indicates certain characteristics of the strip, such as non-counterfeit, regional identification, type of analyte tested, and coding information.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: April 25, 2017
    Assignee: AgaMatrix, Inc.
    Inventors: Sridhar Iyengar, Ian Harding, Charles Boiteau, Colin Butters
  • Publication number: 20160209349
    Abstract: The present invention provides a method and apparatus for creating test strips that may be identified based on differences in electrical conduction or resistance between contact point on the test strip. This is achieved by creating a base test strip with contact points that may be connected to other contact points by an electrical connection. These base test strips may be modified to create a difference in electrical conductivity between contact points, or a contact point may be eliminated. This modification can be used to distinguish different types of test strips based on electrical signature. Additionally, the base test strip may be created such that multiple modifications are possible to distinguish numerous characteristics of test strips.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 21, 2016
    Applicant: AgaMatrix, Inc.
    Inventors: Charles Boiteau, Martin Forest, Sridhar Iyengar, Baoguo Wei
  • Publication number: 20160091449
    Abstract: A test strip with an incorporated optical waveguide and deflectors punched through the optical waveguide allows light to exit through a layer of the test strip and be detected by a photo detector. Using light and a photodetector, these uniquely coded strips are identified. The waveguide can be constructed by sandwiching two layers of the test strip around a light transmissible layer. This configuration allows light to be transmitted through the test strip and out the other end, as well as allowing some light to escape the deflector. This light is detected by a photodetector mounted in the analyte test meter. The deflectors may be placed in patterns such that detection of this light indicates certain characteristics of the strip, such as non-counterfeit, regional identification, type of analyte tested, and coding information.
    Type: Application
    Filed: December 10, 2015
    Publication date: March 31, 2016
    Applicant: AgaMatrix, Inc.
    Inventors: Sridhar Iyengar, Ian Harding, Charles Boiteau, Colin Butters
  • Publication number: 20160061763
    Abstract: A test meter for receiving a test strip comprises: (a) a housing; (b) electronic circuitry disposed within the housing and (c) a strip port connector connected to the electronic circuitry and extending to an opening in the housing, said strip port connector connecting the electronic circuitry with a received test strip. The strip port connector contains a pair of top and bottom contacts, said top and bottom contacts having a proximal end and a distal end and a central contact portion, the top and bottom contacts of the pair are transversely aligned with one another; and the distal ends of the top and bottom contacts are separated or separable from one another by insertion of a test strip between the opposed contacts. The contacts and the meter are adapted to permit detection of faulty contacts and/or coding associated with an inserted test strip.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 3, 2016
    Applicant: AGAMATRIX, INC.
    Inventors: Sridhar Iyengar, Charles Boiteau, Martin Forest, Colin Butters
  • Patent number: 9244000
    Abstract: A test strip with an incorporated optical waveguide and deflectors punched through the optical waveguide allows light to exit through a layer of the test strip and be detected by a photo detector. Using light and a photodetector, these uniquely coded strips are identified. The waveguide can be constructed by sandwiching two layers of the test strip around a light transmissible layer. This configuration allows light to be transmitted through the test strip and out the other end, as well as allowing some light to escape the deflector. This light is detected by a photodetector mounted in the analyte test meter. The deflectors may be placed in patterns such that detection of this light indicates certain characteristics of the strip, such as non-counterfeit, regional identification, type of analyte tested, and coding information.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: January 26, 2016
    Assignee: AgaMatrix, Inc.
    Inventors: Sridhar Iyengar, Ian Harding, Charles Boiteau, Collin Butters
  • Patent number: 9176091
    Abstract: A test meter for receiving a test strip comprises: (a) a housing; (b) electronic circuitry disposed within the housing and (c) a strip port connector connected to the electronic circuitry and extending to an opening in the housing, said strip port connector connecting the electronic circuitry with a received test strip. The strip port connector contains a pair of top and bottom contacts, said top and bottom contacts having a proximal end and a distal end and a central contact portion, the top and bottom contacts of the pair are transversely aligned with one another; and the distal ends of the top and bottom contacts are separated or separable from one another by insertion of a test strip between the opposed contacts. The contacts and the meter are adapted to permit detection of faulty contacts and/or coding associated with an inserted test strip.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 3, 2015
    Assignee: AgaMatrix, Inc.
    Inventors: Sridhar Iyengar, Charles Boiteau, Martin Forest, Colin Butters
  • Publication number: 20130175184
    Abstract: A test meter for receiving a test strip comprises: (a) a housing; (b) electronic circuitry disposed within the housing and (c) a strip port connector connected to the electronic circuitry and extending to an opening in the housing, said strip port connector connecting the electronic circuitry with a received test strip. The strip port connector contains a pair of top and bottom contacts, said top and bottom contacts having a proximal end and a distal end and a central contact portion, the top and bottom contacts of the pair are transversely aligned with one another; and the distal ends of the top and bottom contacts are separated or separable from one another by insertion of a test strip between the opposed contacts. The contacts and the meter are adapted to permit detection of faulty contacts and/or coding associated with an inserted test strip.
    Type: Application
    Filed: September 16, 2011
    Publication date: July 11, 2013
    Applicant: AGAMATRIX, INC.
    Inventors: Sridhar Iyengar, Charles Boiteau, Martin Forest, Colin Butters
  • Publication number: 20130146478
    Abstract: A test strip with an incorporated optical waveguide and deflectors punched through the optical waveguide allows light to exit through a layer of the test strip and be detected by a photo detector. Using light and a photodetector, these uniquely coded strips are identified. The waveguide can be constructed by sandwiching two layers of the test strip around a light transmissible layer. This configuration allows light to be transmitted through the test strip and out the other end, as well as allowing some light to escape the deflector. This light is detected by a photodetector mounted in the analyte test meter. The deflectors may be placed in patterns such that detection of this light indicates certain characteristics of the strip, such as non-counterfeit, regional identification, type of analyte tested, and coding information.
    Type: Application
    Filed: June 30, 2011
    Publication date: June 13, 2013
    Applicant: AgaMatrix, INC.
    Inventors: Sridhar Iyengar, Ian Harding, Charles Boiteau, Colin Butters
  • Publication number: 20090095623
    Abstract: The present invention provides a method and apparatus for creating test strips that may be identified based on differences in electrical conduction or resistance between contact point on the test strip. This is achieved by creating a base test strip with contact points that may be connected to other contact points by an electrical connection. These base test strips may be modified to create a difference in electrical conductivity between contact points, or a contact point may be eliminated. This modification can be used to distinguish different types of test strips based on electrical signature. Additionally, the base test strip may be created such that multiple modifications are possible to distinguish numerous characteristics of test strips.
    Type: Application
    Filed: October 9, 2008
    Publication date: April 16, 2009
    Applicant: AGAMATRIX, INC.
    Inventors: Charles Boiteau, Martin Forest, Sridhar Iyengar, Baoguo Wei
  • Patent number: 5002111
    Abstract: A locking device is provided for anchoring the side edges of a roll-up awning to prevent wrinkles in the awning. The awning includes a hem which is positioned in a groove of a roll-up bar. The locking device comprises a body portion which is sized to be slidably received in the groove for longitudinal sliding movement therein and a radially enlarged portion for clamping the awning against the wall of the groove. A screw on the body portion is screwed into engagement with the wall of the groove to anchor the locking device against longitudinal movement.
    Type: Grant
    Filed: February 20, 1990
    Date of Patent: March 26, 1991
    Assignee: Coleman Faulkner, Inc.
    Inventor: Charles Boiteau