Patents by Inventor Charles Brendan NICHOLSON

Charles Brendan NICHOLSON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883557
    Abstract: A process forms an implantable product including poly(glycerol sebacate) urethane (PGSU) loaded with an active pharmaceutical ingredient (API). The process includes homogeneously mixing a flowable poly(glycerol sebacate) (PGS) resin with the API and a catalyst to form a resin blend. The process also includes homogeneously combining the resin blend with an isocyanate to form a reaction mixture and injecting the reaction mixture to form the PGSU loaded with the API. An implantable product includes a PGSU loaded with an API. In some embodiments, the implantable product includes at least 40% w/w of the API, and the implantable product releases the API by surface degradation of the PGSU at a predetermined release rate for at least three months under physiological conditions. In some embodiments, the PGSU is formed from a PGS reacted with an isocyanate at an isocyanate-to-hydroxyl stoichiometric (crosslinking) ratio in the range of 1:0.25 to 1:1.25.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: January 30, 2024
    Assignee: THE SECANT GROUP, LLC
    Inventors: Stephanie Reed, Carissa Smoot, Dennis Shull, Todd Crumbling, John D'Ottavio, Peter D. Gabriele, Jeremy J. Harris, Charles Brendan Nicholson, Jared Ely
  • Patent number: 11602721
    Abstract: A method of forming cured microparticles includes providing a poly(glycerol sebacate) resin in an uncured state. The method also includes forming the composition into a plurality of uncured microparticles and curing the uncured microparticles to form the plurality of cured microparticles. The uncured microparticles are free of a photo-induced crosslinker. A method of forming a scaffold includes providing microparticles including poly(glycerol sebacate) in a three-dimensional arrangement. The method also includes stimulating the microparticles in the three-dimensional arrangement to sinter the microparticles, thereby forming the scaffold having a plurality of pores. A scaffold is formed of a plurality of microparticles including a poly(glycerol sebacate) thermoset resin in a three-dimensional arrangement. The scaffold has a plurality of pores.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: March 14, 2023
    Assignee: THE SECANT GROUP, LLC
    Inventors: Steven Lu, Peter D. Gabriele, Julia Donnelly, Brian Ginn, Charles Brendan Nicholson, Jeremy J. Harris, Michael S. Flemmens
  • Publication number: 20220257828
    Abstract: A process forms an implantable product including poly(glycerol sebacate) urethane (PGSU) loaded with an active pharmaceutical ingredient (API). The process includes homogeneously mixing a flowable poly(glycerol sebacate) (PGS) resin with the API and a catalyst to form a resin blend. The process also includes homogeneously combining the resin blend with an isocyanate to form a reaction mixture and injecting the reaction mixture to form the PGSU loaded with the API. An implantable product includes a PGSU loaded with an API. In some embodiments, the implantable product includes at least 40% w/w of the API, and the implantable product releases the API by surface degradation of the PGSU at a predetermined release rate for at least three months under physiological conditions. In some embodiments, the PGSU is formed from a PGS reacted with an isocyanate at an isocyanate-to-hydroxyl stoichiometric (crosslinking) ratio in the range of 1:0.25 to 1:1.25.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 18, 2022
    Inventors: Stephanie Reed, Carissa Smoot, Dennis Shull, Todd Crumbling, John D'Ottavio, Peter D. Gabriele, Jeremy J. Harris, Charles Brendan Nicholson, Jared Ely
  • Patent number: 11406732
    Abstract: A process forms an implantable product including poly(glycerol sebacate) urethane (PGSU) loaded with an active pharmaceutical ingredient (API). The process includes homogeneously mixing a flowable poly(glycerol sebacate) (PGS) resin with the API and a catalyst to form a resin blend. The process also includes homogeneously combining the resin blend with an isocyanate to form a reaction mixture and injecting the reaction mixture to form the PGSU loaded with the API. An implantable product includes a PGSU loaded with an API. In some embodiments, the implantable product includes at least 40% w/w of the API, and the implantable product releases the API by surface degradation of the PGSU at a predetermined release rate for at least three months under physiological conditions. In some embodiments, the PGSU is formed from a PGS reacted with an isocyanate at an isocyanate-to-hydroxyl stoichiometric (crosslinking) ratio in the range of 1:0.25 to 1:1.25.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: August 9, 2022
    Assignee: THE SECANT GROUP, LLC
    Inventors: Stephanie Reed, Carissa Smoot, Dennis Shull, Todd Crumbling, John D'Ottavio, Peter D. Gabriele, Jeremy J. Harris, Charles Brendan Nicholson, Jared Ely
  • Publication number: 20220090006
    Abstract: A biocontainment vessel includes a vessel structure including a structural composition and an enhancement composition associated with the structural composition. The enhancement composition includes a co-polymer. The co-polymer is a poly(glycerol sebacate) or a poly(glycerol sebacate urethane). The enhancement composition may also include an augmentation agent associated with the co-polymer. The enhancement composition is located with respect to the structural composition such that the enhancement composition benefits biological cells contained in the biocontainment vessel. A composition includes a co-polymer and an augmentation agent contained by the co-polymer. A method of containing biological cells includes placing the biological cells in an augmented biocontainment vessel and storing them in the augmented biocontainment vessel under predetermined conditions. An augmented substrate includes a substrate and an enhancement composition coating a surface of the substrate.
    Type: Application
    Filed: November 30, 2021
    Publication date: March 24, 2022
    Inventors: Peter D. GABRIELE, Jeremy J. HARRIS, Charles Brendan NICHOLSON, Steven LU, Jeffrey H. ROBERTSON, Gael PERON
  • Patent number: 11208627
    Abstract: A biocontainment vessel includes a vessel structure including a structural composition and an enhancement composition associated with the structural composition. The enhancement composition includes a co-polymer. The co-polymer is a poly(glycerol sebacate) or a poly(glycerol sebacate urethane). The enhancement composition may also include an augmentation agent associated with the co-polymer. The enhancement composition is located with respect to the structural composition such that the enhancement composition benefits biological cells contained in the biocontainment vessel. A composition includes a co-polymer and an augmentation agent contained by the co-polymer. A method of containing biological cells includes placing the biological cells in an augmented biocontainment vessel and storing them in the augmented biocontainment vessel under predetermined conditions. An augmented substrate includes a substrate and an enhancement composition coating a surface of the substrate.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: December 28, 2021
    Assignee: THE SECANT GROUP, LLC
    Inventors: Peter D. Gabriele, Jeremy J. Harris, Charles Brendan Nicholson, Steven Lu, Jeffrey H. Robertson, Gael Peron
  • Publication number: 20210371811
    Abstract: A pH-modulating poly(glycerol sebacate) composition includes poly(glycerol sebacate) and at least one pH-modulating agent associated with the poly(glycerol sebacate). A process of making a pH-modulating poly(glycerol sebacate) composition includes forming a poly(glycerol sebacate) by a water-mediated reaction from glycerol and sebacic acid and associating at least one pH-modulating agent with the poly(glycerol sebacate). A process of modulating a pH of a buffered aqueous solution includes placing a pH-modulating poly(glycerol sebacate) composition in a buffered aqueous solution. The pH-modulating agent is released into the buffered aqueous solution during degradation of the poly(glycerol sebacate) to reduce a decrease in pH of the buffered aqueous solution caused by degradation of the poly(glycerol sebacate).
    Type: Application
    Filed: August 18, 2021
    Publication date: December 2, 2021
    Inventors: Peter D. GABRIELE, Jeremy J. HARRIS, Charles Brendan NICHOLSON, Steven LU, Brian GINN
  • Patent number: 11124762
    Abstract: A pH-modulating poly(glycerol sebacate) composition includes poly(glycerol sebacate) and at least one pH-modulating agent associated with the poly(glycerol sebacate). A process of making a pH-modulating poly(glycerol sebacate) composition includes forming a poly(glycerol sebacate) by a water-mediated reaction from glycerol and sebacic acid and associating at least one pH-modulating agent with the poly(glycerol sebacate). A process of modulating a pH of a buffered aqueous solution includes placing a pH-modulating poly(glycerol sebacate) composition in a buffered aqueous solution. The pH-modulating agent is released into the buffered aqueous solution during degradation of the poly(glycerol sebacate) to reduce a decrease in pH of the buffered aqueous solution caused by degradation of the poly(glycerol sebacate).
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: September 21, 2021
    Assignee: THE SECANT GROUP, LLC
    Inventors: Peter D. Gabriele, Jeremy J. Harris, Charles Brendan Nicholson, Steven Lu, Brian Ginn
  • Publication number: 20210138109
    Abstract: A process forms an implantable product including poly(glycerol sebacate) urethane (PGSU) loaded with an active pharmaceutical ingredient (API). The process includes homogeneously mixing a flowable poly(glycerol sebacate) (PGS) resin with the API and a catalyst to form a resin blend. The process also includes homogeneously combining the resin blend with an isocyanate to form a reaction mixture and injecting the reaction mixture to form the PGSU loaded with the API. An implantable product includes a PGSU loaded with an API. In some embodiments, the implantable product includes at least 40% w/w of the API, and the implantable product releases the API by surface degradation of the PGSU at a predetermined release rate for at least three months under physiological conditions. In some embodiments, the PGSU is formed from a PGS reacted with an isocyanate at an isocyanate-to-hydroxyl stoichiometric (crosslinking) ratio in the range of 1:0.25 to 1:1.25.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 13, 2021
    Inventors: Stephanie REED, Carissa SMOOT, Dennis SHULL, Todd CRUMBLING, John D'OTTAVIO, Peter D. GABRIELE, Jeremy J. HARRIS, Charles Brendan NICHOLSON, Jared ELY
  • Publication number: 20210138073
    Abstract: A bone filling composition includes a bone filler. The bone filler includes microparticles of at least one elastomeric material. The at least one elastomeric material includes a poly(glycerol sebacate)-based thermoset. The poly(glycerol sebacate)-based thermoset may be porous thermoset poly(glycerol sebacate) flour, thermoset poly(glycerol sebacate) microspheres, or a combination thereof. In some embodiments, the bone filling composition is a bone filling composite that further includes a carrier material including a poly(glycerol sebacate) resin. A method of forming a bone filling composite includes selecting a bone filler and mixing the bone filler with a carrier material to form the bone filling composite. A method of treating a bony defect includes molding a bone filling composite and placing the bone filling composite in the bony defect. The bone filling composite includes a bone filler mixed with a carrier material.
    Type: Application
    Filed: January 21, 2021
    Publication date: May 13, 2021
    Inventors: Jeremy J. HARRIS, Charles Brendan NICHOLSON, Peter D. GABRIELE, Jared ELY, Brian GINN
  • Publication number: 20210121576
    Abstract: A method of forming a skin care product includes combining at least one additive including at least one active ingredient with at least one glycerol-sebacate component having repeating units of (glycerol sebacate), water, a co-solvent, and at least one of an emulsifier, a surfactant, and a bodying agent to form the skin care product. A dermocosmetic composition includes at least one additive including at least one active ingredient and at least one glycerol-sebacate component having repeating units of (glycerol sebacate). A method of skin care includes applying a dermocosmetic composition to a skin surface.
    Type: Application
    Filed: January 5, 2021
    Publication date: April 29, 2021
    Inventors: Peter D. GABRIELE, Jeremy J. HARRIS, Carissa SMOOT, Charles Brendan NICHOLSON, Stephanie REED, Ryan R. SMALLEY
  • Patent number: 10918724
    Abstract: A method of forming a skin care product includes combining at least one additive including at least one active ingredient with at least one glycerol-sebacate component having repeating units of (glycerol sebacate), water, a co-solvent, and at least one of an emulsifier, a surfactant, and a bodying agent to form the skin care product. A dermocosmetic composition includes at least one additive including at least one active ingredient and at least one glycerol-sebacate component having repeating units of (glycerol sebacate). A method of skin care includes applying a dermocosmetic composition to a skin surface.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: February 16, 2021
    Assignee: THE SECANT GROUP, LLC
    Inventors: Peter D. Gabriele, Jeremy J. Harris, Carissa Smoot, Charles Brendan Nicholson, Stephanie Reed, Ryan R. Smalley
  • Patent number: 10918764
    Abstract: A process forms an implantable product including poly(glycerol sebacate) urethane (PGSU) loaded with an active pharmaceutical ingredient (API). The process includes homogeneously mixing a flowable poly(glycerol sebacate) (PGS) resin with the API and a catalyst to form a resin blend. The process also includes homogeneously combining the resin blend with an isocyanate to form a reaction mixture and injecting the reaction mixture to form the PGSU loaded with the API. An implantable product includes a PGSU loaded with an API. In some embodiments, the implantable product includes at least 40% w/w of the API, and the implantable product releases the API by surface degradation of the PGSU at a predetermined release rate for at least three months under physiological conditions. In some embodiments, the PGSU is formed from a PGS reacted with an isocyanate at an isocyanate-to-hydroxyl stoichiometric (crosslinking) ratio in the range of 1:0.25 to 1:1.25.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: February 16, 2021
    Assignee: THE SECANT GROUP, LLC
    Inventors: Stephanie Reed, Carissa Smoot, Dennis Shull, Todd Crumbling, John D'Ottavio, Peter D. Gabriele, Jeremy J. Harris, Charles Brendan Nicholson, Jared Ely
  • Patent number: 10918729
    Abstract: A bone filling composition includes a bone filler. The bone filler includes microparticles of at least one elastomeric material. The at least one elastomeric material includes a poly(glycerol sebacate)-based thermoset. The poly(glycerol sebacate)-based thermoset may be porous thermoset poly(glycerol sebacate) flour, thermoset poly(glycerol sebacate) microspheres, or a combination thereof. In some embodiments, the bone filling composition is a bone filling composite that further includes a carrier material including a poly(glycerol sebacate) resin. A method of forming a bone filling composite includes selecting a bone filler and mixing the bone filler with a carrier material to form the bone filling composite. A method of treating a bony defect includes molding a bone filling composite and placing the bone filling composite in the bony defect. The bone filling composite includes a bone filler mixed with a carrier material.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: February 16, 2021
    Assignee: THE SECANT GROUP, LLC
    Inventors: Jeremy J. Harris, Charles Brendan Nicholson, Peter D. Gabriele, Jared Ely, Brian Ginn
  • Publication number: 20210024686
    Abstract: A method includes combining an alcohol-pharmaceutical conjugate, a polyol, and an aqueous liquid in a vessel. The alcohol-pharmaceutical conjugate includes a pharmaceutical compound having at least one carboxyl group attached to the polyol by an ester bond. The method also includes adding an acid monomer to the vessel and heating and removing water from the vessel to produce the polymeric material. The polymeric material includes a polyester copolymer of the acid monomer and the polyol and the pharmaceutical compound.
    Type: Application
    Filed: October 8, 2020
    Publication date: January 28, 2021
    Inventors: Peter D. GABRIELE, Carissa SMOOT, Charles Brendan NICHOLSON, Jeremy J. HARRIS
  • Publication number: 20200354606
    Abstract: The application is directed to aqueous dispersible biodegradable compositions of esters which are the condensation reaction product of a polyol and a diacid which are within a matrix of hydrated polypeptide. The compositions are useful in additive manufacturing and other applications for use with implantable articles. In some embodiments, the ester in the compositions is the product of a glyercol-sebacic acid condensation reaction.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Inventors: Kayla WROBLESKY, Peter D. GABRIELE, Jeremy J. HARRIS, Carissa SMOOT, Charles Brendan NICHOLSON, Austin ROBERTSON, Julia DONNELLY
  • Patent number: 10822450
    Abstract: A method of preparing a polymeric material includes combining a glycerol-pharmaceutical conjugate, glycerol, and water in a vessel. The glycerol-pharmaceutical conjugate includes a pharmaceutical compound, for example, salicylic acid, having at least one carboxyl group attached to glycerol by an ester bond. The method also includes adding sebacic acid to the vessel and removing water from the vessel and reacting the glycerol, glycerol-pharmaceutical conjugate, and sebacic acid in the vessel at atmospheric pressure in the presence of an inert gas. The method further includes applying a sub-atmospheric pressure to the vessel after the step of reacting, to form the polymeric material in the vessel. The polymeric material includes a polyester copolymer of the sebacic acid and the glycerol and the pharmaceutical compound.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: November 3, 2020
    Assignee: THE SECANT GROUP LLC
    Inventors: Peter D. Gabriele, Carissa Smoot, Charles Brendan Nicholson, Jeremy J. Harris
  • Patent number: 10793743
    Abstract: The application is directed to aqueous dispersible biodegradable compositions of esters which are the condensation reaction product of a polyol and a diacid which are within a matrix of hydrated polypeptide. The compositions are useful in additive manufacturing and other applications for use with implantable articles. In some embodiments, the ester in the compositions is the product of a glyercol-sebacic acid condensation reaction.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: October 6, 2020
    Assignee: THE SECANT GROUP, LLC
    Inventors: Kayla Wroblesky, Peter D. Gabriele, Jeremy J. Harris, Carissa Smoot, Charles Brendan Nicholson, Austin Robertson, Julia Donnelly
  • Publication number: 20200139330
    Abstract: A method of forming cured microparticles includes providing a poly(glycerol sebacate) resin in an uncured state. The method also includes forming the composition into a plurality of uncured microparticles and curing the uncured microparticles to form the plurality of cured microparticles. The uncured microparticles are free of a photo-induced crosslinker. A method of forming a scaffold includes providing microparticles including poly(glycerol sebacate) in a three-dimensional arrangement. The method also includes stimulating the microparticles in the three-dimensional arrangement to sinter the microparticles, thereby forming the scaffold having a plurality of pores. A scaffold is formed of a plurality of microparticles including a poly(glycerol sebacate) thermoset resin in a three-dimensional arrangement. The scaffold has a plurality of pores.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: Steven LU, Peter D. GABRIELE, Julia DONNELLY, Brian GINN, Charles Brendan NICHOLSON, Jeremy J. HARRIS, Michael S. FLEMMENS
  • Publication number: 20200101165
    Abstract: A filler material of a thermoset resin of a diacid/polyol, such as PGS is provided. The filler useful in forming composites, such as those in which the filler and a resin matrix are of the same material to provide a homogenous polymeric composition. Composites in which at least one of the matrix, the filler or both are PGS are also provided. Methods of forming such filler materials and composites are also disclosed. The composites allow extrusion process to form articles from materials that would not otherwise be capable of being extruded.
    Type: Application
    Filed: December 4, 2019
    Publication date: April 2, 2020
    Inventors: Kayla WROBLESKY, Carissa SMOOT, Peter D. GABRIELE, Jeremy J. HARRIS, Charles Brendan NICHOLSON, Steven LU