Patents by Inventor Charles Caër

Charles Caër has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10355453
    Abstract: A device may include a substrate and an active region. This active region may include a stack of semiconductor gain materials stacked along a stacking direction. The latter may extend substantially perpendicular to a plane of the substrate. The active region may be furthermore tapered so as to widen toward the substrate. In addition, the device may include a pair of doped layers semiconductor materials, the pair may include an n-doped layer and a p-doped layer arranged on the substrate and on opposite. The doped layers may be arranged on the substrate and on opposite, lateral sides of the tapered active region, respectively. The device may include an electron blocking layer, which may extend both at a first interface, between a p-doped layer and the substrate, and at a second interface, between the tapered active region and the p-doped layer, along a lateral side of the tapered active region.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: July 16, 2019
    Assignee: International Business Machines Corporation
    Inventors: Herwig Hahn, Charles Caër
  • Patent number: 10340661
    Abstract: Embodiments of the disclosure are directed to a lateral current injection electro-optical device. The device comprises an active region with a stack of III-V semiconductor gain materials stacked along a stacking direction z. The active region may be formed as a slab having several lateral surface portions, each extending parallel to the stacking direction z. The device further comprises two paired elements, which include: a pair of doped layers of III-V semiconductor materials (an n-doped layer and a p-doped layer); and a pair of lateral waveguide cores. The two paired elements may be laterally arranged, two-by-two, on opposite sides of the slab. The elements distinctly adjoin respective ones of the lateral surface portions of the slab, so as for these elements to be separated from each other by the slab. The disclosure may be further directed to related silicon photonics devices and fabrication methods.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: July 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Charles Caër, Lukas Czornomaz, Stefan Abel, Bert Jan Offrein
  • Publication number: 20190140425
    Abstract: A device may include a substrate and an active region. This active region may include a stack of semiconductor gain materials stacked along a stacking direction. The latter may extend substantially perpendicular to a plane of the substrate. The active region may be furthermore tapered so as to widen toward the substrate. In addition, the device may include a pair of doped layers semiconductor materials, the pair may include an n-doped layer and a p-doped layer arranged on the substrate and on opposite. The doped layers may be arranged on the substrate and on opposite, lateral sides of the tapered active region, respectively. The device may include an electron blocking layer, which may extend both at a first interface, between a p-doped layer and the substrate, and at a second interface, between the tapered active region and the p-doped layer, along a lateral side of the tapered active region.
    Type: Application
    Filed: November 8, 2017
    Publication date: May 9, 2019
    Inventors: Herwig Hahn, Charles Caër
  • Patent number: 10283931
    Abstract: An electro-optical device having two wafer components and a device fabrication method. A first wafer component includes a silicon substrate and a cladding layer on top thereof. The cladding layer comprises a cavity formed therein, wherein the cavity is filled with an electrically insulating thermal spreader, which has a thermal conductivity larger than that of the cladding layer. The second wafer component comprises a stack of III-V semiconductor gain materials, designed for optical amplification of a given radiation. The second wafer component is bonded to the first wafer component, such that the stack of III-V semiconductor gain materials is in thermal communication with the thermal spreader. In addition, the thermal spreader has a refractive index that is lower than each of the refractive index of the silicon substrate and an average refractive index of the stack of III-V semiconductor gain materials for said given radiation.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: May 7, 2019
    Assignee: International Business Machines Corporation
    Inventors: Charles Caër, Herwig Hahn
  • Publication number: 20190131772
    Abstract: Embodiments of the disclosure are directed to a lateral current injection electro-optical device. The device comprises an active region with a stack of III-V semiconductor gain materials stacked along a stacking direction z. The active region may be formed as a slab having several lateral surface portions, each extending parallel to the stacking direction z. The device further comprises two paired elements, which include: a pair of doped layers of III-V semiconductor materials (an n-doped layer and a p-doped layer); and a pair of lateral waveguide cores. The two paired elements may be laterally arranged, two-by-two, on opposite sides of the slab. The elements distinctly adjoin respective ones of the lateral surface portions of the slab, so as for these elements to be separated from each other by the slab. The disclosure may be further directed to related silicon photonics devices and fabrication methods.
    Type: Application
    Filed: November 1, 2017
    Publication date: May 2, 2019
    Inventors: Charles Caër, Lukas Czornomaz, Stefan Abel, Bert Jan Offrein
  • Patent number: 10256603
    Abstract: An electro-optical device having two wafer components and a device fabrication method. A first wafer component includes a silicon substrate and a cladding layer on top thereof. The cladding layer comprises a cavity formed therein, wherein the cavity is filled with an electrically insulating thermal spreader, which has a thermal conductivity larger than that of the cladding layer. The second wafer component comprises a stack of III-V semiconductor gain materials, designed for optical amplification of a given radiation. The second wafer component is bonded to the first wafer component, such that the stack of III-V semiconductor gain materials is in thermal communication with the thermal spreader. In addition, the thermal spreader has a refractive index that is lower than each of the refractive index of the silicon substrate and an average refractive index of the stack of III-V semiconductor gain materials for said given radiation.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: April 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Charles Caër, Herwig Hahn
  • Publication number: 20190067911
    Abstract: A lateral current injection electro-optical device includes a slab having a pair of structured, doped layers of III-V semiconductor materials arranged side-by-side in the slab, the pair including an n-doped layer and a p-doped layer, each of the p-doped layer and the n-doped layer includes a two-dimensional photonic crystal, and a separation section extending between the pair of structured layers, the separation section separates the pair of structured layers, the separation section includes current blocking trenches, and an active region of III-V semiconductor gain materials between the current blocking trenches that form a photonic crystal cavity.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Inventors: Charles Caër, Lukas Czornomaz
  • Publication number: 20180323575
    Abstract: An electro-optical device having two wafer components and a device fabrication method. A first wafer component includes a silicon substrate and a cladding layer on top thereof. The cladding layer comprises a cavity formed therein, wherein the cavity is filled with an electrically insulating thermal spreader, which has a thermal conductivity larger than that of the cladding layer. The second wafer component comprises a stack of III-V semiconductor gain materials, designed for optical amplification of a given radiation. The second wafer component is bonded to the first wafer component, such that the stack of III-V semiconductor gain materials is in thermal communication with the thermal spreader. In addition, the thermal spreader has a refractive index that is lower than each of the refractive index of the silicon substrate and an average refractive index of the stack of III-V semiconductor gain materials for said given radiation.
    Type: Application
    Filed: November 6, 2017
    Publication date: November 8, 2018
    Inventors: Charles Caër, Herwig Hahn
  • Publication number: 20180323574
    Abstract: An electro-optical device having two wafer components and a device fabrication method. A first wafer component includes a silicon substrate and a cladding layer on top thereof. The cladding layer comprises a cavity formed therein, wherein the cavity is filled with an electrically insulating thermal spreader, which has a thermal conductivity larger than that of the cladding layer. The second wafer component comprises a stack of III-V semiconductor gain materials, designed for optical amplification of a given radiation. The second wafer component is bonded to the first wafer component, such that the stack of III-V semiconductor gain materials is in thermal communication with the thermal spreader. In addition, the thermal spreader has a refractive index that is lower than each of the refractive index of the silicon substrate and an average refractive index of the stack of III-V semiconductor gain materials for said given radiation.
    Type: Application
    Filed: May 5, 2017
    Publication date: November 8, 2018
    Inventors: Charles Caër, Herwig Hahn