Patents by Inventor Charles Chengyea Leu

Charles Chengyea Leu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9337799
    Abstract: This disclosure provides implementations of methods, apparatus and systems for producing acoustic wave devices and for selectively modifying one or more acoustic or electromechanical characteristics of such devices. In one aspect, a method includes depositing a structural layer over a substrate. The structural layer includes a plurality of structural portions, each being positioned over a corresponding device region. The method also includes arranging a mask layer over the structural layer. The mask layer includes a plurality of mask portions, each including a number of mask openings that expose a corresponding region of the structural portion. The method also includes accelerating dopant particles toward the mask layer. The accelerated dopant particles that proceed through the mask openings are impacted into the corresponding structural portion.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: May 10, 2016
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Philip Jason Stephanou, Chengjie Zuo, Changhan Hobie Yun, Sang-June Park, Charles Chengyea Leu, Jonghae Kim, Ravindra V. Shenoy
  • Publication number: 20140125432
    Abstract: This disclosure provides implementations of methods, apparatus and systems for producing acoustic wave devices and for selectively modifying one or more acoustic or electromechanical characteristics of such devices. In one aspect, a method includes depositing a structural layer over a substrate. The structural layer includes a plurality of structural portions, each being positioned over a corresponding device region. The method also includes arranging a mask layer over the structural layer. The mask layer includes a plurality of mask portions, each including a number of mask openings that expose a corresponding region of the structural portion. The method also includes accelerating dopant particles toward the mask layer. The accelerated dopant particles that proceed through the mask openings are impacted into the corresponding structural portion.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Philip Jason Stephanou, Chengjie Zuo, Changhan Hobie Yun, Sang-June Park, Charles Chengyea Leu, Jonghae Kim, Ravindra V. Shenoy
  • Publication number: 20140098109
    Abstract: Systems, methods and apparatuses reduce stress and/or reduce stiffness in a movable layer of an electromechanical systems (EMS) device. Stress or stiffness can be reduced by including one or more compressive stress layers to compensate for the tensile stress exhibited by other layers of the movable layer. The movable layer can include a dielectric core with a first tensile stress layer and a first compressive stress layer on a first side of the dielectric core, and a second tensile stress layer and a second compressive stress layer on a second side of the dielectric core.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 10, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Charles Chengyea Leu, Yi Tao, Fan Zhong
  • Patent number: 6045931
    Abstract: A magnetic recording medium comprising a cobalt-samarium magnetic alloy layer is formed having a high aerial recording density and exhibiting high coercivity, utilizing an underlayer with a thin nucleation layer thereon. Embodiments include sputter depositing a Cr or Cr alloy underlayer on a non-magnetic substrate, including alternative substrates, and sputter depositing a thin nucleation layer comprising Cr or a Cr alloy on the underlayer. A CoSm alloy layer is sputter deposited on the nucleation layer under substantially the same inert gas pressure as the nucleation layer, whereby Cr diffuses from the nucleation layer into and alloys with the CoSm magnetic alloy layer, thereby increasing media coercivity and corrosion resistance, and reducing media noise. A Cr overcoat on a CoSm alloy layer greatly reduces the oxidation of CoSm, thereby improving its corrosion resistance.
    Type: Grant
    Filed: September 3, 1997
    Date of Patent: April 4, 2000
    Assignee: Seagate Technology, Inc.
    Inventors: Xing Song, Ga-Lane Chen, Charles Chengyea Leu