Patents by Inventor Charles D. Tanner

Charles D. Tanner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230193457
    Abstract: In a method of forming a diamond film, substrate, or window, a substrate is provided and the diamond film, substrate, or window is CVD grown on a surface of the substrate. The grown diamond film, substrate, or window has a thickness between 150-999 microns and an aspect ratio?100, wherein the aspect ratio is a ratio of a largest dimension of the diamond film, substrate or window divided by a thickness of the diamond film. The substrate can optionally be removed or separated from the grown diamond film, substrate, or window.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 22, 2023
    Inventors: Wen-Qing XU, Thomas E. Anderson, Giovanni BARBAROSSA, Elgin E. EISSLER, Chao LIU, Charles D. TANNER
  • Patent number: 11618945
    Abstract: In a method of forming a diamond film, substrate, or window, a substrate is provided and the diamond film, substrate, or window is CVD grown on a surface of the substrate. The grown diamond film, substrate, or window has a thickness between 150-999 microns and an aspect ratio?100, wherein the aspect ratio is a ratio of a largest dimension of the diamond film, substrate or window divided by a thickness of the diamond film. The substrate can optionally be removed or separated from the grown diamond film, substrate, or window.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: April 4, 2023
    Assignee: II-VI DELAWARE, INC.
    Inventors: Wen-Qing Xu, Thomas E. Anderson, Giovanni Barbarossa, Elgin E. Eissler, Chao Liu, Charles D. Tanner
  • Patent number: 11214871
    Abstract: A chemical vapor deposition (CVD) reactor includes a resonating cavity configured to receive microwaves. A microwave transparent window positioned in the resonating cavity separates the resonating cavity into an upper zone and a plasma zone. Microwaves entering the upper zone propagate through the microwave transparent window into the plasma zone. A substrate is disposed proximate a bottom of the plasma zone opposite the microwave transparent window. A ring structure, positioned around a perimeter of the substrate in the plasma zone, includes a lower section that extends from the bottom of the resonating cavity toward the microwave transparent window and an upper section on a side of the lower section opposite the bottom of the resonating cavity. The upper section extends radially toward a central axis of the ring structure. An as-grown diamond film on the substrate is also disclosed.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: January 4, 2022
    Assignee: II-VI DELAWARE, INC.
    Inventors: David Sabens, Charles D. Tanner, Elgin E. Eissler
  • Patent number: 10910127
    Abstract: In a method of chemical vapor deposition (CVD) growth of a polycrystalline diamond film in a CVD reactor, a gas mixture of gaseous hydrogen and a gaseous hydrocarbon is introduced into the CVD reactor. A plasma formed from the gas mixture is maintained above a surface of a conductive substrate disposed in the CVD reactor and causes a polycrystalline diamond film to grow on the surface of the conductive substrate. A temperature T at the center of the polycrystalline diamond film is controlled during growth of the polycrystalline diamond film. The CVD grown polycrystalline diamond film includes diamond crystallites that can have a percentage of orientation along a [110] diamond lattice direction?70% of the total number of diamond crystallites forming the polycrystalline diamond film.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: February 2, 2021
    Assignee: II-VI Delaware, Inc.
    Inventors: Wen-Qing Xu, Chao Liu, Charles J. Kraisinger, Charles D. Tanner, Ian Currier, David Sabens, Elgin E. Eissler, Thomas E Anderson
  • Publication number: 20200071818
    Abstract: In a method of forming a diamond film, substrate, or window, a substrate is provided and the diamond film, substrate, or window is CVD grown on a surface of the substrate. The grown diamond film, substrate, or window has a thickness between 150-999 microns and an aspect ratio?100, wherein the aspect ratio is a ratio of a largest dimension of the diamond film, substrate or window divided by a thickness of the diamond film. The substrate can optionally be removed or separated from the grown diamond film, substrate, or window.
    Type: Application
    Filed: October 25, 2019
    Publication date: March 5, 2020
    Inventors: Wen-Qing Xu, Thomas E. Anderson, Giovanni Barbarossa, Elgin E. Eissler, Chao Liu, Charles D. Tanner
  • Patent number: 10494713
    Abstract: In a method of forming a diamond film, diamond substrate, or diamond window, a silicon substrate is provided and the diamond film, diamond substrate, or diamond window is CVD grown on a surface of the silicon substrate. The grown diamond film, diamond substrate, or diamond window has an aspect ratio ?100, wherein the aspect ratio is a ratio of a largest dimension of the diamond film, diamond substrate, or diamond window divided by a thickness of the diamond film, diamond substrate, or diamond window. The silicon substrate has a thickness greater than or equal to 2 mm. The silicon substrate can optionally be removed or separated from the grown diamond film, diamond substrate, or diamond window.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: December 3, 2019
    Assignee: II-VI Incorporated
    Inventors: Wen-Qing Xu, Thomas E. Anderson, Giovanni Barbarossa, Elgin E. Eissler, Chao Liu, Charles D. Tanner
  • Publication number: 20190326030
    Abstract: In a method of chemical vapor deposition (CVD) growth of a polycrystalline diamond film in a CVD reactor, a gas mixture of gaseous hydrogen and a gaseous hydrocarbon is introduced into the CVD reactor. A plasma formed from the gas mixture is maintained above a surface of a conductive substrate disposed in the CVD reactor and causes a polycrystalline diamond film to grow on the surface of the conductive substrate. A temperature T at the center of the polycrystalline diamond film is controlled during growth of the polycrystalline diamond film. The CVD grown polycrystalline diamond film includes diamond crystallites that can have a percentage of orientation along a [110] diamond lattice direction?70% of the total number of diamond crystallites forming the polycrystalline diamond film.
    Type: Application
    Filed: July 3, 2019
    Publication date: October 24, 2019
    Inventors: Wen-Qing Xu, Chao Liu, Charles J. Kraisinger, Charles D. Tanner, Ian Currier, David Sabens, Elgin E. Eissler, Thomas E. Anderson
  • Publication number: 20190242016
    Abstract: A chemical vapor deposition (CVD) reactor includes a resonating cavity configured to receive microwaves. A microwave transparent window positioned in the resonating cavity separates the resonating cavity into an upper zone and a plasma zone. Microwaves entering the upper zone propagate through the microwave transparent window into the plasma zone. A substrate is disposed proximate a bottom of the plasma zone opposite the microwave transparent window. A ring structure, positioned around a perimeter of the substrate in the plasma zone, includes a lower section that extends from the bottom of the resonating cavity toward the microwave transparent window and an upper section on a side of the lower section opposite the bottom of the resonating cavity. The upper section extends radially toward a central axis of the ring structure. An as-grown diamond film on the substrate is also disclosed.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Inventors: David Sabens, Charles D. Tanner, Elgin E. Eissler
  • Patent number: 10373725
    Abstract: In a method of chemical vapor deposition (CVD) growth of a polycrystalline diamond film in a CVD reactor, a gas mixture of gaseous hydrogen and a gaseous hydrocarbon is introduced into the CVD reactor. A plasma formed from the gas mixture is maintained above a surface of a conductive substrate disposed in the CVD reactor and causes a polycrystalline diamond film to grow on the surface of the conductive substrate. A temperature T at the center of the polycrystalline diamond film is controlled during growth of the polycrystalline diamond film. The CVD grown polycrystalline diamond film includes diamond crystallites that can have a percentage of orientation along a [110] diamond lattice direction?70% of the total number of diamond crystallites forming the polycrystalline diamond film.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: August 6, 2019
    Assignee: II-VI Incorporated
    Inventors: Wen-Qing Xu, Chao Liu, Charles J. Kraisinger, Charles D. Tanner, Ian Currier, David Sabens, Elgin E. Eissler, Thomas E. Anderson
  • Patent number: 10280511
    Abstract: A chemical vapor deposition (CVD) reactor includes a resonating cavity configured to receive microwaves. A microwave transparent window positioned in the resonating cavity separates the resonating cavity into an upper zone and a plasma zone. Microwaves entering the upper zone propagate through the microwave transparent window into the plasma zone. A substrate is disposed proximate a bottom of the plasma zone opposite the microwave transparent window. A ring structure, positioned around a perimeter of the substrate in the plasma zone, includes a lower section that extends from the bottom of the resonating cavity toward the microwave transparent window and an upper section on a side of the lower section opposite the bottom of the resonating cavity. The upper section extends radially toward a central axis of the ring structure. A method of microwave plasma CVD growth of a diamond film on the substrate is also disclosed.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: May 7, 2019
    Assignee: II-VI Incorporated
    Inventors: David Sabens, Charles D. Tanner, Elgin E. Eissler
  • Publication number: 20170298515
    Abstract: A chemical vapor deposition (CVD) reactor includes a resonating cavity configured to receive microwaves. A microwave transparent window positioned in the resonating cavity separates the resonating cavity into an upper zone and a plasma zone. Microwaves entering the upper zone propagate through the microwave transparent window into the plasma zone. A substrate is disposed proximate a bottom of the plasma zone opposite the microwave transparent window. A ring structure, positioned around a perimeter of the substrate in the plasma zone, includes a lower section that extends from the bottom of the resonating cavity toward the microwave transparent window and an upper section on a side of the lower section opposite the bottom of the resonating cavity. The upper section extends radially toward a central axis of the ring structure. A method of microwave plasma CVD growth of a diamond film on the substrate is also disclosed.
    Type: Application
    Filed: March 2, 2017
    Publication date: October 19, 2017
    Inventors: David Sabens, Charles D. Tanner, Elgin E. Eissler
  • Publication number: 20160333472
    Abstract: In a method of forming a diamond film, substrate, or window, a silicon substrate is provided and the diamond film, substrate, or window is CVD grown on a surface of the silicon substrate. The grown diamond film, substrate, or window has an aspect ratio ?100, wherein the aspect ratio is a ratio of a largest dimension of the diamond film, substrate or window divided by a thickness of the diamond film. The silicon substrate can optionally be removed or separated from the grown diamond film, substrate, or window.
    Type: Application
    Filed: April 7, 2016
    Publication date: November 17, 2016
    Inventors: Wen-Qing Xu, Thomas E. Anderson, Giovanni Barbarossa, Elgin E. Eissler, Chao Liu, Charles D. Tanner
  • Patent number: 9469918
    Abstract: A multilayer substrate includes a diamond layer CVD grown on a composite layer. The composite layer includes particles of diamond and silicon carbide and, optionally, silicon. A loading level (by volume) of diamond in the composite layer can be ?5%; ?20%; ?40%; or ?60%. The multilayer substrate can be used as an optical device; a detector for detecting radiation particles or electromagnetic waves; a device for cutting, drilling, machining, milling, lapping, polishing, coating, bonding, or brazing; a braking device; a seal; a heat conductor; an electromagnetic wave conductor; a chemically inert device for use in a corrosive environment, a strong oxidizing environment, or a strong reducing environment, at an elevated temperature, or under a cryogenic condition; or a device for polishing or planarization of other devices, wafers or films.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: October 18, 2016
    Assignee: II-VI Incorporated
    Inventors: Wen-Qing Xu, Elgin E. Eissler, Chao Liu, Charles D. Tanner, Charles J. Kraisinger, Michael Aghajanian
  • Publication number: 20160177441
    Abstract: In a system and method of growing a diamond film, a cooling gas flows between a substrate and a substrate holder of a plasma chamber and a process gas flows into the plasma chamber. In the presence of an plasma in the plasma chamber, a temperature distribution across the top surface of the substrate and/or across a growth surface of the growing diamond film is controlled whereupon, during diamond film growth, the temperature distribution is controlled to have a predetermined temperature difference between a highest temperature and a lowest temperature of the temperature distribution. The as-grown diamond film has a total thickness variation (TTV)<10%, <5%, or <1%; and/or a birefringence between 0 and 100 nm/cm, 0 and 80 nm/cm, 0 and 60 nm/cm, 0 and 40 nm/cm, 0 and 20 nm/cm, 0 and 10 nm/cm, or 0 and 5 nm/cm.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 23, 2016
    Inventors: David Sabens, Chao Liu, Wen-Qing Xu, Charles D. Tanner
  • Publication number: 20160130725
    Abstract: In a method of chemical vapor deposition (CVD) growth of a polycrystalline diamond film in a CVD reactor, a gas mixture of gaseous hydrogen and a gaseous hydrocarbon is introduced into the CVD reactor. A plasma formed from the gas mixture is maintained above a surface of a conductive substrate disposed in the CVD reactor and causes a polycrystalline diamond film to grow on the surface of the conductive substrate. A temperature T at the center of the polycrystalline diamond film is controlled during growth of the polycrystalline diamond film. The CVD grown polycrystalline diamond film includes diamond crystallites that can have a percentage of orientation along a [110] diamond lattice direction ?70% of the total number of diamond crystallites forming the polycrystalline diamond film.
    Type: Application
    Filed: August 4, 2015
    Publication date: May 12, 2016
    Inventors: Wen-Qing Xu, Chao Liu, Charles J. Kraisinger, Charles D. Tanner, Ian Currier, David Sabens, Elgin E. Eissler, Thomas E. Anderson
  • Publication number: 20150218694
    Abstract: A multilayer substrate includes a diamond layer CVD grown on a composite layer. The composite layer includes particles of diamond and silicon carbide and, optionally, silicon. A loading level (by volume) of diamond in the composite layer can be ?5%; ?20%; ?40%; or ?60%. The multilayer substrate can be used as an optical device; a detector for detecting radiation particles or electromagnetic waves; a device for cutting, drilling, machining, milling, lapping, polishing, coating, bonding, or brazing; a braking device; a seal; a heat conductor; an electromagnetic wave conductor; a chemically inert device for use in a corrosive environment, a strong oxidizing environment, or a strong reducing environment, at an elevated temperature, or under a cryogenic condition; or a device for polishing or planarization of other devices, wafers or films.
    Type: Application
    Filed: January 20, 2015
    Publication date: August 6, 2015
    Inventors: Wen-Qing Xu, Elgin E. Eissler, Chao Liu, Charles D. Tanner, Charles J. Kraisinger, Michael Aghajanian