Patents by Inventor Charles E. Dean

Charles E. Dean has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10344657
    Abstract: A system and method of reducing particulate matter accumulation in a diesel particulate filter of an exhaust system of a vehicle comprises operating the vehicle including an engine connected to the exhaust system in a drive mode. At least one parameter indicative of particulate matter accumulation in the diesel particulate filter is monitored and evaluated against a predetermined particulate matter accumulation limit. Control logic determines at least one operating parameter of the vehicle and adjusts the transmission assembly from a first transmission position to at least one second transmission position to increase engine speed and generate higher exhaust gas flow when the particulate matter accumulation is greater than the predetermined particulate matter accumulation to regenerate the diesel particulate filter.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: July 9, 2019
    Assignee: GM Global Technology Operations LLC
    Inventor: Charles E. Dean
  • Patent number: 10323559
    Abstract: A selective catalytic reduction device (SCR) system performs intrusive steady state dosing correction (SSDC) when a NOx error between a predicted and measured downstream NOx value exceeds a threshold. In SSDC, if NOx breakthrough or NH3 slip is detected above a SSDC threshold, a short term reductant dosing adaptation occurs. Optionally long term dosing adaptations occur if the magnitude of previous short term adaptations exceed a short term adaptation threshold. If SSDC is insufficiently improving SCR performance based on the number of intrusive events occurring within a period of time and the change in NOx error during the time period, a method includes modifying the SSDC protocol by one or more of increasing the duration of short term adaptations, decreasing the SSDC threshold, and reducing the short term adaptation threshold. The method further includes subsequently inhibiting intrusive events from occurring.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 18, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Sarah Funk, Charles E. Dean, Po-I Lee, David P. Quigley
  • Patent number: 10323561
    Abstract: Methods for monitoring thermal characteristics of oxidation catalyst (OC) catalytic composition(s) (CC) are provided, and comprise communicating exhaust gas to the OC, and determining a temperature change of the CC for the time frame based on a plurality of heat sources including heat imparted to the CC from exhaust gas enthalpy, heat imparted to the CC via oxidation of HC and/or CO in exhaust gas, heat imparted to the CC via water present in the exhaust gas condensing on the CC or heat removed from the CC via water evaporating from the CC, and optionally heat exchanged between the CC and the ambient environment. Heat imparted to the CC via water condensing on the CC can be determined using an increasing relative humidity proximate the CC, and heat removed from the CC via water evaporating from the CC can be determined using a decreasing relative humidity proximate the CC.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: June 18, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael A. Smith, Charles E. Dean, Raffaele Esposito
  • Publication number: 20190178131
    Abstract: A selective catalytic reduction device (SCR) system performs intrusive steady state dosing correction (SSDC) when a NOx error between a predicted and measured downstream NOx value exceeds a threshold. In SSDC, if NOx breakthrough or NH3 slip is detected above a SSDC threshold, a short term reductant dosing adaptation occurs. Optionally long term dosing adaptations occur if the magnitude of previous short term adaptations exceed a short term adaptation threshold. If SSDC is insufficiently improving SCR performance based on the number of intrusive events occurring within a period of time and the change in NOx error during the time period, a method includes modifying the SSDC protocol by one or more of increasing the duration of short term adaptations, decreasing the SSDC threshold, and reducing the short term adaptation threshold. The method further includes subsequently inhibiting intrusive events from occurring.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Sarah Funk, Charles E. Dean, Po-I Lee, David P. Quigley
  • Publication number: 20190010851
    Abstract: Technical solutions are described for an emissions control system for a motor vehicle including an internal combustion engine. An example emissions control system for treating exhaust gas in a motor vehicle including an internal combustion engine. For example, the emissions control system includes a selective catalytic reduction (SCR) device, an NOx sensor, and a controller that is configured to detect a NH3 slip of the SCR device. The controller detects the NH3 slip by modulating an engine out NOx from an engine, demodulating the engine out NOx from the engine to original state, and measuring NOx upstream and downstream from the SCR device after the modulation. Further, the controller determines the NH3 slip by comparing gradients in the NOx measurement with one or more predetermined thresholds.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 10, 2019
    Inventors: Sarah Funk, Charles E. Dean, Po-I Lee, David P. Quigley
  • Publication number: 20180306088
    Abstract: Methods for monitoring thermal characteristics of oxidation catalyst (OC) catalytic composition(s) (CC) are provided, and comprise communicating exhaust gas to the OC, and determining a temperature change of the CC for the time frame based on a plurality of heat sources including heat imparted to the CC from exhaust gas enthalpy, heat imparted to the CC via oxidation of HC and/or CO in exhaust gas, heat imparted to the CC via water present in the exhaust gas condensing on the CC or heat removed from the CC via water evaporating from the CC, and optionally heat exchanged between the CC and the ambient environment. Heat imparted to the CC via water condensing on the CC can be determined using an increasing relative humidity proximate the CC, and heat removed from the CC via water evaporating from the CC can be determined using a decreasing relative humidity proximate the CC.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 25, 2018
    Inventors: Michael A. Smith, Charles E. Dean, Raffaele Esposito
  • Patent number: 9909482
    Abstract: A system and method for evaluating the efficiency of an oxidation catalyst of a vehicle exhaust system includes a diagnostic control system including a controller operatively connected to the exhaust system and at least one temperature sensor disposed proximate the oxidation catalyst to measure the temperature of the exhaust gas. The controller determines an operating state of at least one of the engine and exhaust system and initiates a particulate filter regeneration process in response to the detected operating state. The controller defines a first diagnostic index value and calculates a second diagnostic index value based upon the first diagnostic index value and an offset value. An oxidation catalyst efficiency validation module determines the efficiency of the oxidation catalyst.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: March 6, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Michelangelo Ardanese, David Edwards, Charles E. Dean
  • Publication number: 20180038298
    Abstract: A method for controlling an exhaust gas treatment system is provided. The exhaust gas treatment system includes an exhaust gas stream supplied by an exhaust gas source to a selective catalytic reduction device and a particulate filter device. Additionally or alternatively, the exhaust gas treatment system includes an exhaust gas stream supplied by an exhaust gas source to a selective catalytic reduction filter device. The method comprises initiating a selective catalytic reduction device service in response to a reductant dosing adaptation. The method can further include satisfying a secondary condition prior to initiating a selective catalytic reduction device service. The device service can include increasing the exhaust gas temperature or initiating an active regeneration of the particulate filter device.
    Type: Application
    Filed: August 2, 2016
    Publication date: February 8, 2018
    Inventors: Charles E. Dean, Michael A. Smith, Michelangelo Ardanese, Jon C. Miller
  • Publication number: 20180016962
    Abstract: A system and method for evaluating the efficiency of an oxidation catalyst of a vehicle exhaust system includes a diagnostic control system including a controller operatively connected to the exhaust system and at least one temperature sensor disposed proximate the oxidation catalyst to measure the temperature of the exhaust gas. The controller determines an operating state of at least one of the engine and exhaust system and initiates a particulate filter regeneration process in response to the detected operating state. The controller defines a first diagnostic index value and calculates a second diagnostic index value based upon the first diagnostic index value and an offset value. An oxidation catalyst efficiency validation module determines the efficiency of the oxidation catalyst.
    Type: Application
    Filed: July 18, 2016
    Publication date: January 18, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michelangelo Ardanese, David Edwards, Charles E. Dean
  • Publication number: 20170234198
    Abstract: A system and method of reducing particulate matter accumulation in a diesel particulate filter of an exhaust system of a vehicle comprises operating the vehicle including an engine connected to the exhaust system in a drive mode. At least one parameter indicative of particulate matter accumulation in the diesel particulate filter is monitored and evaluated against a predetermined particulate matter accumulation limit. Control logic determines at least one operating parameter of the vehicle and adjusts the transmission assembly from a first transmission position to at least one second transmission position to increase engine speed and generate higher exhaust gas flow when the particulate matter accumulation is greater than the predetermined particulate matter accumulation to regenerate the diesel particulate filter.
    Type: Application
    Filed: February 12, 2016
    Publication date: August 17, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Charles E. Dean
  • Publication number: 20170234197
    Abstract: A system and method for diagnosing the oxidation catalyst of a vehicle includes an engine, an exhaust system in fluid communication with an exhaust port of the engine and an oxidation catalyst connected with the engine via the exhaust port to receive an exhaust stream from the engine. A controller is operable to determine the operating state of the engine and vehicle, calculate a heat release value for the oxidation catalyst and determine an ideal heat release value. The controller will determine the oxidation catalyst efficiency by calculating a ratio of the heat release value to the ideal heat release value.
    Type: Application
    Filed: February 12, 2016
    Publication date: August 17, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Charles E. Dean
  • Patent number: 9732660
    Abstract: An integrated sensor-catalyst is disclosed for an after-treatment (AT) system used to filter an exhaust gas flow emitted by an internal combustion engine. The integrated sensor-catalyst includes a sensor element configured to detect a parameter of the exhaust gas flow. The integrated sensor-catalyst also includes a micro-catalyst element configured to filter a pollutant from the exhaust gas flow. Additionally, the integrated sensor-catalyst includes a housing configured to hold the sensor element and the micro-catalyst element and fix the micro-catalyst element relative to the sensor element such that the micro-catalyst element is arranged and maintained in the exhaust gas flow upstream of the sensor element. A vehicle including such an AT system with the integrated sensor-catalyst is also disclosed.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: August 15, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Luciano Nunziato Di Perna, Jianwen Li, Charles E. Dean, Rahul Mital, David B. Brown
  • Publication number: 20170211445
    Abstract: An exhaust gas assembly includes an exhaust gas tube configured to receive an exhaust gas from the internal combustion engine, which includes at least one cylinder. An oxidation catalytic device may be operatively connected to the exhaust gas tube and includes a catalyst. A first temperature sensor is operatively connected to the oxidation catalytic device. A controller is operatively connected to the first temperature sensor. A hydrocarbon injector is operatively connected to the controller and configured to selectively inject an amount of hydrocarbon at a hydrocarbon injection rate. The controller includes a processor and tangible, non-transitory memory on which is recorded instructions for executing a method of controlling the hydrocarbon injection rate. The controller may be programmed to limit the hydrocarbon injection rate based at least partially on a combination of space velocity, temperature of the catalyst in the oxidation catalytic device and temperature of a particulate filter.
    Type: Application
    Filed: January 21, 2016
    Publication date: July 27, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Charles E. Dean, Andrea Hidalgo, Michelangelo Ardanese
  • Patent number: 9714594
    Abstract: An exhaust gas assembly includes an exhaust gas tube configured to receive an exhaust gas from the internal combustion engine, which includes at least one cylinder. An oxidation catalytic device may be operatively connected to the exhaust gas tube and includes a catalyst. A first temperature sensor is operatively connected to the oxidation catalytic device. A controller is operatively connected to the first temperature sensor. A hydrocarbon injector is operatively connected to the controller and configured to selectively inject an amount of hydrocarbon at a hydrocarbon injection rate. The controller includes a processor and tangible, non-transitory memory on which is recorded instructions for executing a method of controlling the hydrocarbon injection rate. The controller may be programmed to limit the hydrocarbon injection rate based at least partially on a combination of space velocity, temperature of the catalyst in the oxidation catalytic device and temperature of a particulate filter.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: July 25, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Charles E. Dean, Andrea Hidalgo, Michelangelo Ardanese
  • Publication number: 20170152786
    Abstract: An integrated sensor-catalyst is disclosed for an after-treatment (AT) system used to filter an exhaust gas flow emitted by an internal combustion engine. The integrated sensor-catalyst includes a sensor element configured to detect a parameter of the exhaust gas flow. The integrated sensor-catalyst also includes a micro-catalyst element configured to filter a pollutant from the exhaust gas flow. Additionally, the integrated sensor-catalyst includes a housing configured to hold the sensor element and the micro-catalyst element and fix the micro-catalyst element relative to the sensor element such that the micro-catalyst element is arranged and maintained in the exhaust gas flow upstream of the sensor element. A vehicle including such an AT system with the integrated sensor-catalyst is also disclosed.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 1, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Luciano Nunziato Di Perna, Jianwen Li, Charles E. Dean, Rahul Mital, David B. Brown
  • Patent number: 8893604
    Abstract: The subject munitions deployment platform for an Anti-Personnel Obstacle Breaching System munitions set provides prepositioned compartments to receive the ALICE packs of the munitions set to ensure that they are positioned and aligned for proper deployment. The pre-positioned compartments ensure that when the APOBS is deployed, the front edge of the rear ALICE pack properly engages the rear edge of the front ALICE pack providing a fulcrum aiding rotation of the rear pack allowing it to clear the engaging elements to lift the rear pack off the platform and into the air where it further functions as a drogue to assist in extending the charge line over the chosen target line. Combining the subject platform with a vehicle, or with a towed wagon, allows a Soldier to remain in a safe location while remotely positioning the munitions set to clear a minefield or other anti-personnel obstacle.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: November 25, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Jeremy P. Gray, James R. Mason, Charles E. Dean, Jacob P. Warren
  • Patent number: 5684267
    Abstract: A resupply projectile is described which can deliver critical logistic supplies rapidly and accurately to forward combatants with minimum risk to supply personnel or equipment and which is not hampered by either weather or terrain.
    Type: Grant
    Filed: February 4, 1997
    Date of Patent: November 4, 1997
    Assignee: The United States of Americas as represented by the Secretary of the Army
    Inventor: Charles E. Dean