Patents by Inventor Charles E. Nelson

Charles E. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240147631
    Abstract: Devices, systems, and methods for making and using highly sustainable circuit assemblies are disclosed herein. In various aspects, the highly sustainable circuit assembly includes a substrate layer; and a pattern of contact points supported by the substrate layer. The pattern of contact points can be configured to correspond to at least one terminal of an electrical component. The pattern of contact points can include a deformable conductive material. The deformable conductive material can be a non-hazardous, readily reclaimable, readily recyclable material.
    Type: Application
    Filed: February 25, 2022
    Publication date: May 2, 2024
    Applicant: Liquid Wire, LLC
    Inventors: Jorge E. Carbo, JR., Sai Srinivas Desabathina, Michael Adventure Hopkins, Charles J. Kinzel, Mark S. Kruskopf, Jesse Michael Martinez, Katherine M. Nelson, Taylor V. Neumann, Trevor Antonio Rivera, Mark William Ronay, Michael Jasper Wallans, Austin Michael Clarke
  • Patent number: 8454229
    Abstract: Two vertically offset thermistors for sensing a fluid such as oil and refrigerant in a compressor shell are monitored by a method that takes into account rapidly changing conditions within the shell. The system can determine the fluid's sump temperature, high/low liquid levels, and can determine whether the thermistors are sensing the fluid as a liquid, gas, or a mixture of the two, such as a foam or mist of liquid and gas. For greater accuracy, thermistor readings can be dithered and filtered to provide temperature or voltage values having more significant digits than the readings originally processed through a limited-bit A/D converter. For faster response, limited microprocessor time is conserved by sampling thermistor readings at strategic periods that enable the microprocessor to identify certain conditions and temperatures via simple delta-temperature ratios and undemanding equations rather than resorting to exponential functions or lookup tables to determine time constants.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: June 4, 2013
    Assignee: Trane International Inc.
    Inventors: Ronald W. Okoren, Jerry E. Brown, Joel C. VanderZee, Charles E. Nelson, Steven K. Klingemann, Jeffrey J. DeGroot
  • Patent number: 8393787
    Abstract: Two vertically offset thermistors for sensing a fluid such as oil and refrigerant in a compressor shell are monitored by a method that takes into account rapidly changing conditions within the shell. The system can determine the fluid's sump temperature, high/low liquid levels, and can determine whether the thermistors are sensing the fluid as a liquid, gas, or a mixture of the two, such as a foam or mist of liquid and gas. For greater accuracy, thermistor readings can be dithered and filtered to provide temperature or voltage values having more significant digits than the readings originally processed through a limited-bit A/D converter. For faster response, limited microprocessor time is conserved by sampling thermistor readings at strategic periods that enable the microprocessor to identify certain conditions and temperatures via simple delta-temperature ratios and undemanding equations rather than resorting to exponential functions or lookup tables to determine time constants.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: March 12, 2013
    Assignee: Trane International Inc.
    Inventors: Ronald W. Okoren, Jerry E. Brown, Joel C. VanderZee, Charles E. Nelson, Steven K. Klingemann, Jeffrey J. DeGroot
  • Publication number: 20110075700
    Abstract: Two vertically offset thermistors for sensing a fluid such as oil and refrigerant in a compressor shell are monitored by a method that takes into account rapidly changing conditions within the shell. The system can determine the fluid's sump temperature, high/low liquid levels, and can determine whether the thermistors are sensing the fluid as a liquid, gas, or a mixture of the two, such as a foam or mist of liquid and gas. For greater accuracy, thermistor readings can be dithered and filtered to provide temperature or voltage values having more significant digits than the readings originally processed through a limited-bit A/D converter. For faster response, limited microprocessor time is conserved by sampling thermistor readings at strategic periods that enable the microprocessor to identify certain conditions and temperatures via simple delta-temperature ratios and undemanding equations rather than resorting to exponential functions or lookup tables to determine time constants.
    Type: Application
    Filed: December 3, 2010
    Publication date: March 31, 2011
    Inventors: Ronald W. Okoren, Jerry E. Brown, Joel C. VanderZee, Charles E. Nelson, Steven K. Klingemann, Jeffrey J. DeGroot
  • Publication number: 20110075699
    Abstract: Two vertically offset thermistors for sensing a fluid such as oil and refrigerant in a compressor shell are monitored by a method that takes into account rapidly changing conditions within the shell. The system can determine the fluid's sump temperature, high/low liquid levels, and can determine whether the thermistors are sensing the fluid as a liquid, gas, or a mixture of the two, such as a foam or mist of liquid and gas. For greater accuracy, thermistor readings can be dithered and filtered to provide temperature or voltage values having more significant digits than the readings originally processed through a limited-bit A/D converter. For faster response, limited microprocessor time is conserved by sampling thermistor readings at strategic periods that enable the microprocessor to identify certain conditions and temperatures via simple delta-temperature ratios and undemanding equations rather than resorting to exponential functions or lookup tables to determine time constants.
    Type: Application
    Filed: December 3, 2010
    Publication date: March 31, 2011
    Inventors: Ronald W. Okoren, Jerry E. Brown, Joel C. VanderZee, Charles E. Nelson, Steven K. Klingemann, Jeffrey J. DeGroot
  • Patent number: 7874724
    Abstract: Two vertically offset thermistors for sensing a fluid such as oil and refrigerant in a compressor shell are monitored by a method that takes into account rapidly changing conditions within the shell. The system can determine the fluid's sump temperature, high/low liquid levels, and can determine whether the thermistors are sensing the fluid as a liquid, gas, or a mixture of the two, such as a foam or mist of liquid and gas. For greater accuracy, thermistor readings can be dithered and filtered to provide temperature or voltage values having more significant digits than the readings originally processed through a limited-bit A/D converter. For faster response, limited microprocessor time is conserved by sampling thermistor readings at strategic periods that enable the microprocessor to identify certain conditions and temperatures via simple delta-temperature ratios and undemanding equations rather than resorting to exponential functions or lookup tables to determine time constants.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: January 25, 2011
    Assignee: Trane International Inc.
    Inventors: Ronald W. Okoren, Jerry E. Brown, Joel C. VanderZee, Charles E. Nelson, Steven K. Klingemann, Jeffrey J. DeGroot
  • Publication number: 20080250798
    Abstract: Two vertically offset thermistors for sensing a fluid such as oil and refrigerant in a compressor shell are monitored by a method that takes into account rapidly changing conditions within the shell. The system can determine the fluid's sump temperature, high/low liquid levels, and can determine whether the thermistors are sensing the fluid as a liquid, gas, or a mixture of the two, such as a foam or mist of liquid and gas. For greater accuracy, thermistor readings can be dithered and filtered to provide temperature or voltage values having more significant digits than the readings originally processed through a limited-bit A/D converter. For faster response, limited microprocessor time is conserved by sampling thermistor readings at strategic periods that enable the microprocessor to identify certain conditions and temperatures via simple delta-temperature ratios and undemanding equations rather than resorting to exponential functions or lookup tables to determine time constants.
    Type: Application
    Filed: April 11, 2007
    Publication date: October 16, 2008
    Inventors: Ronald W. Okoren, Jerry E. Brown, Joel C. VanderZee, Charles E. Nelson, Steven K. Klingemann, Jeffrey J. DeGroot
  • Patent number: 6733627
    Abstract: A method for manufacturing paper having a variable characteristic in a crossmachine direction including the steps of feeding a slurry to a distributor and delivering the slurry from the distributor to a headbox through a plurality of delivery lines. The delivery lines are coupled to the headhox at a plurality of locations spaced across the headbox in a crossmachine direction. The method includes selectively introducing a property altering agent in at least two of the delivery lines at the distributor to selectively alter the properties of the slurry passing through the at least two delivery lines. The method also includes the step of depositing the slurry received by the headbox on a papermaking wire to form paper.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: May 11, 2004
    Assignee: MeadWestvaco Corporation
    Inventors: Kenneth A. Krukonis, Charles E. Nelson, Mark R. Kleman
  • Publication number: 20020029861
    Abstract: A method for manufacturing paper having colored stripes, the method comprising the steps of feeding a slurry to a distributor and delivering the slurry from the distributor to a headbox through a plurality of delivery lines. The delivery lines are coupled to the headbox at a plurality of locations spaced across the headbox in a crossmachine direction. The method further comprises the steps of selectively introducing a first coloring agent in at least two of the delivery lines to selectively color the slurry passing through the at least two delivery lines and depositing the slurry received by the headbox on a papermaking wire to form striped paper.
    Type: Application
    Filed: June 13, 2001
    Publication date: March 14, 2002
    Inventors: Kenneth A. Krukonis, Charles E. Nelson, Mark R. Kleman
  • Patent number: 6270625
    Abstract: A method for manufacturing paper having colored stripes, the method comprising the steps of feeding a slurry to a distributor and delivering the slurry from the distributor to a headbox through a plurality of delivery lines. The delivery lines are coupled to the headbox at a plurality of locations spaced across the headbox in a crossmachine direction. The method further comprises the steps of selectively introducing a first coloring agent in at least two of the delivery lines to selectively color the slurry passing through the at least two delivery lines and depositing the slurry received by the headbox on a papermaking wire to form striped paper.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: August 7, 2001
    Assignee: The Mead Corporation
    Inventors: Kenneth A. Krukonis, Charles E. Nelson, Mark R. Kleman
  • Patent number: 4952898
    Abstract: The present invention relates to a transformer secondary buss adapter having a rigid member constructed of an electrically conducted material wherein the top end of the member is substantially flat on two sides and has a hole therethrough. A threaded stud is attached to the other end thereof and has a threaded nut thereon for connecting a buss bar thereto. The transformer secondary buss adapter is used to obviate the need for splicing when an old style shorter transformer is replaced by a taller, newer model.
    Type: Grant
    Filed: November 7, 1989
    Date of Patent: August 28, 1990
    Inventors: Charles E. Nelson, Warren D. McClellan
  • Patent number: 4729805
    Abstract: Stretched surface recording disk (SD) 10 comprises an annular support 12 having raised annular ridges 42 and 28 at its inside and outside diameters 22 and 30 with a base portion 24 in between the two ridges, and an annular recording medium film 14 held in radial tension and stretched across the base portion by adhering the film to attachment surfaces 48 and 36 near the inside and outside diameters respectively. The SD is annealed twice during manufacture to relieve stress in the stretched film 14. This annealing results in SD essentially free from track anisotropy and stress distribution anisotropy in the plane of the disk. As a result, data tracks are more stable than in previous SD, track density can be greater, and the SD is generally more reliable.
    Type: Grant
    Filed: August 11, 1986
    Date of Patent: March 8, 1988
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Jerry L. Alexander, Sankar B. Narayan, Sten R. Gerfast, Charles E. Nelson
  • Patent number: 4623570
    Abstract: Stretched surface recording disk (SD) 10 comprises an annular support 12 having raised annular ridges 42 and 28 at its inside and outside diameters 22 and 30 with a base portion 24 in between the two ridges, and an annular recording medium film 14 held in radial tension and stretched across the base portion by adhering the film to attachment surfaces 48 and 36 near the inside and outside diameters respectively. The SD is annealed twice duringmanufacture to relieve stress in the stretched film 14. This annealing results in SD essentially free from track anisotropy and stress distribution anisotropy in the plane of the disk. As a result, data tracks are more stable than in previous SD, track density can be greater, and the SD is generally more reliable.
    Type: Grant
    Filed: March 14, 1985
    Date of Patent: November 18, 1986
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Jerry L. Alexander, Sankar B. Narayan, Sten R. Gerfast, Charles E. Nelson
  • Patent number: RE33187
    Abstract: Stretched surface recording disk (SD) 10 comprises an annular support 12 having raised annular ridges 42 and 28 at its inside and outside diameters 22 and 30 with a base portion 24 in between the two ridges, and an annular recording medium film 14 held in radial tension and stretched across the base portion by adhering the film to attachment surfaces 48 and 36 near the inside and outside diameters respectively. The SD is annealed twice .[.duringmanufacture.]. .Iadd.during manufacture .Iaddend.to relieve stress in the stretched film 14. This annealing results in SD essentially free from track anisotropy and stress distribution anisotropy in the plane of the disk. As a result, data tracks are more stable than in previous SD, track density can be greater, and the SD is generally more reliable.
    Type: Grant
    Filed: November 2, 1988
    Date of Patent: March 27, 1990
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Jerry L. Alexander, Sankar B. Narayan, Sten R. Gerfast, Charles E. Nelson
  • Patent number: RE34765
    Abstract: Stretched surface recording disk (SD) 10 comprises an annular support 12 having raised annular ridges 42 and 28 at its inside and outside diameters 22 and 30 with a base portion 24 in between the two ridges, and an annular recording medium film 14 held in radial tension and stretched across the base portion by adhering the film to attachment surfaces 48 and 36 near the inside and outside diameters respectively. The SD is annealed twice during manufacture to relieve stress in the stretched film 14. This annealing results in SD essentially free from track anisotropy and stress distribution anisotropy in the plane of the disk. As a result, data tracks are more stable than in previous SD, track density can be greater, and the SD is generally more reliable.
    Type: Grant
    Filed: November 2, 1988
    Date of Patent: October 25, 1994
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Jerry L. Alexander, Sankar B. Narayan, Sten R. Gerfast, Charles E. Nelson