Patents by Inventor Charles E. Solbrig

Charles E. Solbrig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180274464
    Abstract: An emissions control system for a motor vehicle including an internal combustion engine includes a lean NOx trap (LNT) device including an LNT inlet and an LNT outlet, and a LNT sensor arranged at the LNT inlet. The LNT sensor is operable to detect a temperature of exhaust gases passing into the LNT device. A selective catalytic reduction (SCR) member is fluidically connected to the LNT device. The SCR device includes an SCR inlet and an SCR outlet. An SCR sensor is mounted to the SCR. The SCR sensor is operable to detect a temperature of the SCR. A LNT regeneration control system including a LNT regeneration controller is operatively connected to the LNT sensor and the SCR sensor. The LNT regeneration control system is operable to activate the LNT regeneration controller based on inputs from the LNT sensor and the SCR sensor.
    Type: Application
    Filed: March 27, 2017
    Publication date: September 27, 2018
    Inventors: Stefano Pellegrino, Charles E. Solbrig, Jean-Yves Lavallee
  • Patent number: 9777654
    Abstract: A method for controlling a vehicle including an exhaust aftertreatment system for purifying exhaust gases from a compression-ignition engine includes monitoring vehicle operating parameters, determining whether the vehicle is stopped, determining whether the engine is commanded off, and determining whether the exhaust aftertreatment device is at a predetermined operating temperature. When the vehicle is stopped, the engine is commanded off and the exhaust aftertreatment device is at the predetermined operating temperature the engine is controlled in a run-on state for a predetermined period of time. The run-on state includes operating the engine in a throttled and fueled state.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: October 3, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Gongshin Qi, Eric D. Thomas, Charles E. Solbrig
  • Publication number: 20170198653
    Abstract: A method for controlling a vehicle including an exhaust aftertreatment system for purifying exhaust gases from a compression-ignition engine includes monitoring vehicle operating parameters, determining whether the vehicle is stopped, determining whether the engine is commanded off, and determining whether the exhaust aftertreatment device is at a predetermined operating temperature. When the vehicle is stopped, the engine is commanded off and the exhaust aftertreatment device is at the predetermined operating temperature the engine is controlled in a run-on state for a predetermined period of time. The run-on state includes operating the engine in a throttled and fueled state.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 13, 2017
    Inventors: GONGSHIN QI, ERIC D. THOMAS, CHARLES E. SOLBRIG
  • Patent number: 9689331
    Abstract: An internal combustion engine is coupled to an oxidation catalyst disposed upstream of a second catalytic device. A controller includes an instruction set executable to detect a cold start engine starting event, monitor first and second temperature sensors, control each of the fuel injectors to execute a first set of fuel injection events for each cylinder event in response to an output torque request, and execute a second set of fuel injection events for each cylinder event after cylinder top-dead-center. The second set of fuel injection events includes a final injection event, and a duration of the final injection event is determined based upon the first and second temperatures.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: June 27, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Jean-Yves Lavallee, Joshua Clifford Bedford, Giuseppe Mazzara Bologna, Charles E. Solbrig
  • Patent number: 9605573
    Abstract: An exhaust treatment system for an internal combustion engine having improved mixing of an injected fluid comprises an exhaust gas conduit configured to receive exhaust gas from an internal combustion engine and to deliver the exhaust gas to the exhaust treatment system. A fluid injector in fluid communication with the exhaust gas conduit configured delivers a fluid into the exhaust gas and an evaporation volume disposed in the exhaust conduit downstream of the fluid injector is configured to slow the bulk velocity of the fluid and exhaust gas mixture to thereby increase the residence time of the exhaust gas mixture therein. An exhaust treatment device is configured to receive the fluid and exhaust gas mixture.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: March 28, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Charles E. Solbrig, Melanie K. Corrigan, Ognyan N. Yanakiev
  • Patent number: 9562452
    Abstract: A method for controlling regeneration within an after-treatment component of an engine comprises receiving a signal indicative of whether the engine is in an operating state or a non-operating state and detecting, based on the signal, when the engine has departed an operating state and entered a non-operating state. When the engine has departed an operating state and entered a non-operating state, a regeneration event is initiated. The regeneration event comprises causing a stream of air to flow through the after-treatment component and initiating a flow of fuel into the stream of air.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: February 7, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Charles E. Solbrig
  • Patent number: 9429058
    Abstract: A selective catalytic reduction (SCR) system includes an exhaust pipe for receiving an exhaust gas from an engine. A selective catalytic reduction (SCR) unit is provided downstream of the exhaust pipe. A first mixing element including a meshed body defines a first surface, a second surface, and a plurality of openings extending from the first surface to the second surface. The first surface and second surface are parallel to each other and define an angle relative to a flow direction of the exhaust flow. The angle is less than 90 degrees.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: August 30, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Charles E. Solbrig, Chandrashekhar Joshi, Sherif H. El Tahry, Venkata Subbareddy Kasa
  • Publication number: 20160040579
    Abstract: An exhaust treatment system comprises a filter device in communication with the engine and configured to receive exhaust gas therefrom. The filter device comprises a canister including an inlet, a filter structure having an upstream, inlet end, a downstream, outlet end, and a series of filtering flow passages. A center zone conduit is in sealing, fluid contact with the downstream, outlet end of the filter structure to thereby define a center flow zone and perimeter flow zone. A flow control valve assembly is disposed in the center zone conduit. A controller is in signal communication with the flow control valve and a temperature sensor and monitors a temperature profile of the filter structure wherein, upon a determination that the temperature of the center flow zone of the filter structure is above a predetermined level, the controller drives the flow control valve assembly to a closed position.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 11, 2016
    Inventors: Charles E. Solbrig, Gongshin Qi
  • Patent number: 9255510
    Abstract: A control system includes an upstream nitrogen oxide (NOx) control module that increases an upstream NOx level based on an initial upstream NOx level in an exhaust system, and an ammonia (NH3) storage condition detection module that detects a NH3 storage condition based on a difference in a downstream NOx level before and after the upstream NOx level is increased. A method includes increasing an upstream NOx level based on an initial upstream NOx level in an exhaust system, and detecting an NH3 storage condition based on a difference in a downstream NOx level before and after the upstream NOx level is increased.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: February 9, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Charles E. Solbrig, Ognyan N. Yanakiev
  • Publication number: 20160024985
    Abstract: An exhaust treatment system for an internal combustion engine having improved mixing of an injected fluid comprises an exhaust gas conduit configured to receive exhaust gas from an internal combustion engine and to deliver the exhaust gas to the exhaust treatment system. A fluid injector in fluid communication with the exhaust gas conduit configured delivers a fluid into the exhaust gas and an evaporation volume disposed in the exhaust conduit downstream of the fluid injector is configured to slow the bulk velocity of the fluid and exhaust gas mixture to thereby increase the residence time of the exhaust gas mixture therein. An exhaust treatment device is configured to receive the fluid and exhaust gas mixture.
    Type: Application
    Filed: July 23, 2014
    Publication date: January 28, 2016
    Inventors: Charles E. Solbrig, Melanie K. Corrigan, Ognyan N. Yanakiev
  • Patent number: 9238991
    Abstract: An internal combustion engine has an exhaust treatment system with a fluid injection system and a swirl can plenum mixer for mixing injected fluid with exhaust gas exhausted from the engine. The mixer comprises a canister having an inner plenum. A bulkhead separates the inner plenum into an exhaust gas collector and a diffuser chamber. A flow port opens through the bulkhead to a tangential flow director on the downstream side of the bulkhead to collect the exhaust gas. A fluid injector port receives a fluid injector for dispensing a fluid into the exhaust gas for mixing with the exhaust gas in the swirl can plenum mixer. A tangential flow director nozzle is configured to dispense the exhaust gas and fluid into the downstream plenum in a tangential flow trajectory, wherein mixing and vaporization of the exhaust gas and fluid mixture with the exhaust gas is accomplished.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: January 19, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Charles E. Solbrig, Ognyan N. Yanakiev, Melanie K. Corrigan
  • Patent number: 9097191
    Abstract: An engine air system for charge flow temperature estimation includes a charge air cooler outlet temperature sensor configured to provide a first temperature signal, an exhaust gas recirculation outlet temperature sensor configured to provide a second temperature signal, and a control module configured to receive the first temperature signal and the second temperature signal. The control module includes a charge flow temperature estimation module configured to determine an the estimated charge flow temperature at an intake manifold temperature sensing position based on a combination of the first temperature signal multiplied by an estimated fresh air fraction and the second temperature signal multiplied by an exhaust gas recirculation fraction.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: August 4, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Ognyan N. Yanakiev, Charles E. Solbrig, Ryle Maxson
  • Patent number: 9051866
    Abstract: An internal combustion engine includes a particulate filter that is configured to treat exhaust gas. A method for monitoring the particulate filter includes employing a soot sensor to monitor the exhaust gas downstream of the particulate filter. A fault is detected in the particulate filter when accumulated soot mass indicated by the soot sensor exceeds a soot mass threshold over a course of engine operation between a first regeneration event and a second regeneration event of the particulate filter. A control module associated with operation of the internal combustion engine is notified of the fault.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: June 9, 2015
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ognyan N. Yanakiev, Igor Anilovich, Cristian Taibi, Charles E. Solbrig, Janean E. Kowalkowski
  • Patent number: 9016045
    Abstract: An exhaust gas treatment system for an internal combustion engine is provided and includes an exhaust gas conduit, a generator, an electrically heated catalyst (“EHC”) device, and a control module. The exhaust gas conduit is in fluid communication with, and is configured to receive an exhaust gas from the internal combustion engine. The generator operates at a generator speed to produce electrical power. The EHC device is in fluid communication with the exhaust gas conduit. The EHC device includes a monolith structure that is divided into a plurality of segments that define discrete resistive paths. The resistive paths are selectively connected to the generator for receiving electrical power. The control module is in communication with the EHC device, the generator, and the internal combustion engine. The control module includes control logic for determining the generator speed.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: April 28, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Chang H. Kim, Charles E. Solbrig
  • Patent number: 8959900
    Abstract: A mixing plenum for exhaust gas comprises a canister with an inlet and an outlet. A bulkhead is located downstream from the inlet to define an exhaust gas consolidation chamber. An opening in the bulkhead allows exhaust gas to enter a u-shape conduit configured to direct the exhaust gas from a downstream direction to an upstream direction before releasing the exhaust gas back into the plenum downstream of the bulkhead. An injector is configured to inject fluid into the exhaust gas entering the conduit. A conduit exit located a distance “E” from the downstream side of the bulkhead allows the exhaust gas/fluid mixture to exit the conduit into a larger exit volume of the compact mixing can, in the manner of an expansion chamber, where its velocity slows and further mixing of the fluid/exhaust gas occurs and exits the compact mixing can through the outlet flange.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: February 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Charles E. Solbrig, Ognyan N. Yanakiev
  • Patent number: 8915062
    Abstract: An internal combustion engine operating at a lean air/fuel ratio includes a reductant injection system configured to dispense reductant into an exhaust gas feedstream upstream of a selective catalytic reduction device. The reductant injection system includes a reductant delivery system fluidly coupled to a reductant dispensing device that is configured to dispense the reductant. A method for monitoring the reductant injection system includes commanding the reductant dispensing device to dispense reductant at a prescribed reductant flowrate, controlling the reductant delivery system to a preferred operating state, monitoring operation of the reductant delivery system and estimating a reductant flowrate as a function of the monitored operation of the reductant delivery system, and diagnosing operation of the reductant injection system as a function of the prescribed reductant flowrate and the estimated reductant flowrate.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: December 23, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Yue-Yun Wang, Charles E. Solbrig, Stephen Paul Levijoki
  • Patent number: 8881504
    Abstract: An exhaust gas treatment system for an internal combustion engine is provided. The exhaust gas system includes an exhaust gas conduit, a generator, a vehicle electrical system, a primary energy storage device, a rechargeable secondary energy storage device, an electrically heated catalyst (“EHC”) device, and a control module. The primary energy storage device is selectively connected to the generator. The primary energy storage device has a threshold state of charge (“SOC”). The rechargeable secondary energy storage device is selectively connected to the generator and the vehicle electrical system. The EHC device is in fluid communication with the exhaust gas conduit. The EHC device has an electric heater that is selectively connected the generator for receiving energy and a selectively activated catalyst that is heated to a respective light-off temperature.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 11, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Charles E. Solbrig, Chang H. Kim
  • Publication number: 20140318112
    Abstract: An internal combustion engine has an exhaust treatment system with a fluid injection system and a swirl can plenum mixer for mixing injected fluid with exhaust gas exhausted from the engine. The mixer comprises a canister having an inner plenum. A bulkhead separates the inner plenum into an exhaust gas collector and a diffuser chamber. A flow port opens through the bulkhead to a tangential flow director on the downstream side of the bulkhead to collect the exhaust gas. A fluid injector port receives a fluid injector for dispensing a fluid into the exhaust gas for mixing with the exhaust gas in the swirl can plenum mixer. A tangential flow director nozzle is configured to dispense the exhaust gas and fluid into the downstream plenum in a tangential flow trajectory, wherein mixing and vaporization of the exhaust gas and fluid mixture with the exhaust gas is accomplished.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 30, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Charles E. Solbrig, Ognyan N. Yanakiev, Melanie K. Corrigan
  • Patent number: 8826652
    Abstract: A power system and a method for energizing an electrically heated catalyst are provided. The system includes a controller that generates a first control signal to set a switching device to a first operational state if the first temperature level downstream of the catalyst is less than a threshold temperature level and the engine is being decelerated. The controller further generates a second control signal to induce a generator to output a second voltage if the first temperature level is less than the threshold temperature level and the engine is being decelerated, such that the second voltage is applied through the switching device in the first operational state to the catalyst to increase a temperature of the catalyst.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Charles E. Solbrig, Michael J. Paratore, Jr.
  • Publication number: 20140165535
    Abstract: A method for controlling regeneration within an after-treatment component of an engine comprises receiving a signal indicative of whether the engine is in an operating state or a non-operating state and detecting, based on the signal, when the engine has departed an operating state and entered a non-operating state. When the engine has departed an operating state and entered a non-operating state, a regeneration event is initiated. The regeneration event comprises causing a stream of air to flow through the after-treatment component and initiating a flow of fuel into the stream of air.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, JR., Charles E. Solbrig