Patents by Inventor Charles Eckert

Charles Eckert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9261112
    Abstract: Dampers for fan spinners of aircraft engines are disclosed. An example fan module for a gas turbine engine may include a fan disk; fan blades mounted to the fan disk and extending radially therefrom; a fan spinner operatively coupled to the fan disk at an axially upstream position; and/or one or more elastic vibration dampers operatively interposing the fan spinner and the fan disk. The elastic vibration dampers may be disposed circumferentially around an interface between the fan spinner and the fan disk and may be compressed axially and/or radially.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: February 16, 2016
    Assignee: General Electric Company
    Inventors: Philip Howard Stoughton, Benjamin Allen Dietsch, Anthony John Durchholz, Michael Charles Eckert
  • Patent number: 8710265
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: April 29, 2014
    Assignees: Queen's University at Kingston, Georgia Tech Research Corporation
    Inventors: Philip G. Jessop, Charles A. Eckert, Charles L. Liotta, David J. Heldebrant
  • Publication number: 20130327989
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 12, 2013
    Applicants: GEORGIA TECH RESEARCH CORPORATION, QUEEN'S UNIVERSITY AT KINGSTON
    Inventors: Philip G. JESSOP, Charles A. ECKERT, Charles L. LIOTTA, David J. HELDEBRANT
  • Patent number: 8513464
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 20, 2013
    Assignees: Georgia Tech Research Corporation, Queen's University at Kingston
    Inventors: Philip G. Jessop, Charles A. Eckert, Charles L. Liotta, David J. Heldebrant
  • Publication number: 20130046092
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Application
    Filed: June 29, 2011
    Publication date: February 21, 2013
    Applicants: QUEEN'S UNIVERSITY AT KINGSTON, GEORGIA TECH RESEARCH CORPORATION
    Inventors: Philip JESSOP, Charles ECKERT, Charles LIOTTA, David HELDEBRANT
  • Publication number: 20120116076
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Application
    Filed: June 29, 2011
    Publication date: May 10, 2012
    Applicants: GEORGIA TECH RESEARCH CORPORATION, QUEEN'S UNIVERSITY AT KINGSTON
    Inventors: Philip G. JESSOP, Charles A. ECKERT, Charles L. LIOTTA, David J. HELDEBRANT
  • Patent number: 7982069
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: July 19, 2011
    Assignees: Queen's University at Kingston, Georgia Tech Research Corporation
    Inventors: Philip G. Jessop, Charles A. Eckert, Charles L. Liotta, David J. Heldebrant
  • Patent number: 7404943
    Abstract: Methods of enhancing the solubility of a fluorinated compound in an organic solvent are provided. In one embodiment, carbon dioxide gas pressure is applied to the solvent at a pressure effective to enhance the solubility of the fluorinated compound. The method may further include recrystallizing the fluorinated compound by reducing the pressure of the carbon dioxide gas. Also provided are methods of conducting a reaction using a fluorinated compound in an organic solvent. In one embodiment, the method comprises applying carbon dioxide pressure to an organic solvent comprising at least one substrate and a fluorinated catalyst, in an effective amount to solubilize the catalyst; and permitting the fluorinated catalyst to catalyze the reaction of the substrate to form a product. The catalyst is optionally separated from the reaction product and solvent after the reaction by the release of the pressure.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: July 29, 2008
    Assignees: The Regents of the University of California, Georgia Tech Research Corporation
    Inventors: Charles A. Eckert, Philip G. Jessop, Charles L. Liotta
  • Publication number: 20080058549
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Application
    Filed: March 13, 2007
    Publication date: March 6, 2008
    Inventors: Philip Jessop, Charles Eckert, Charles Liotta
  • Publication number: 20070288165
    Abstract: A method and system for degimbalization of sensor outputs is provided. Data output from an embedded GPS inertial navigation system (EGI), which is mounted within a gimbaled system on a vehicle, is processed to provide degimballed navigation data. Generally, motion of the EGI is due to the vehicle motion and the gimbal motion. To provide navigation information relating solely to the vehicle, effects of the gimbal motion within the EGI outputs can be removed.
    Type: Application
    Filed: May 26, 2006
    Publication date: December 13, 2007
    Applicant: Honeywell International Inc.
    Inventors: Charles Eckert, Reed May, Maurice Shrader-Frechette, Delroy Sowada, Michael Symonds, Michael Vaujin, Jeff Willis
  • Patent number: 7293956
    Abstract: An annular air baffle for use in a cavity of an annular rotatable gas turbine engine component includes an annular split baffle ring having a plurality of circumferentially spaced apart and radially inwardly extending intermediate dams circumferentially disposed between first and second end dams. The intermediate dams and the first and second end dams extend radially inwardly from a continuous annular section. Voids are disposed between the intermediate dams and between the first and second end dams and adjacent ones of the intermediate dams. The voids are located radially inwardly of the continuous annular section and are formed by removing material from a split rolled ring rolled from barstock or a rod.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: November 13, 2007
    Assignee: General Electric Company
    Inventors: Michael Charles Eckert, Kenneth Rees Bain
  • Patent number: 7008181
    Abstract: An annular air baffle disposed in a cavity of a rotatable gas turbine engine part includes an annular split ring supporting a plurality of circumferentially spaced apart fins. The cavity is closed at a radially outer diameter and open at a radially inner diameter of the part. The ring and the fins may be integrally formed in one piece. The fins may have common surfaces with the ring and the common surfaces may be circular cross-sectional surfaces of the ring and radially outer rounded corners of the fins. The fins may have triangular cross-sectional shapes with first, second, and third sides, rounded first radially inner corners between the first and second sides, rounded second radially inner corners between the second and third sides, and the radially outer rounded corners between the first and third sides. The fins may extend radially inwardly from the annular split ring.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: March 7, 2006
    Assignee: General Electric Co.
    Inventors: Robert Paul Czachor, Michael Charles Eckert, Richard William Albrecht, Steven Alan Ross
  • Patent number: 7000838
    Abstract: A method for processing scanned code data, including a plurality of strings, to determine whether the scanned code data is part of a valid code begins by examining a first string of a first scanned code data. A cluster is opened with the first string if the first string contains a start pattern. At least one valid middle portion of the first string is identified and a transition position count associated with the at least one valid middle portion is stored. A second scanned code data is searched for a second string matching at least part of the first string in the cluster. If a match is found, then the second string is added to the end of the cluster. The cluster is closed upon detection of a stop pattern and is then decoded.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: February 21, 2006
    Assignee: Accu-Sort Systems, Inc.
    Inventors: Charles Lapinski, Charles Eckert, Richard Skokowski, James Cox, William Scott, Edward Chaleff, Jeffrey G. Sharpe, David A. Wurz
  • Publication number: 20050015936
    Abstract: Methods of enhancing the solubility of a fluorinated compound in an organic solvent are provided. In one embodiment, carbon dioxide gas pressure is applied to the solvent at a pressure effective to enhance the solubility of the fluorinated compound. The method may further include recrystallizing the fluorinated compound by reducing the pressure of the carbon dioxide gas. Also provided are methods of conducting a reaction using a fluorinated compound in an organic solvent In one embodiment, the method comprises applying carbon dioxide pressure to an organic solvent comprising at least one substrate and a fluorinated catalyst, in an effective amount to solubilize the catalyst; and permitting the fluorinated catalyst to catalyze the reaction of the substrate to form a product. The catalyst is optionally separated from the reaction product and solvent after the reaction by the release of the pressure.
    Type: Application
    Filed: May 30, 2002
    Publication date: January 27, 2005
    Inventors: Charles Eckert, Philip Jessop, Charles Liottta
  • Publication number: 20040182931
    Abstract: A method for processing scanned code data, including a plurality of strings, to determine whether the scanned code data is part of a valid code begins by examining a first string of a first scanned code data. A cluster is opened with the first string if the first string contains a start pattern. At least one valid middle portion of the first string is identified and a transition position count associated with the at least one valid middle portion is stored. A second scanned code data is searched for a second string matching at least part of the first string in the cluster. If a match is found, then the second string is added to the end of the cluster. The cluster is closed upon detection of a stop pattern and is then decoded.
    Type: Application
    Filed: December 23, 2003
    Publication date: September 23, 2004
    Inventors: Charles Lapinski, Charles Eckert, Richard Skokowski, James Cox, William Scott, Edward Chaleff, Jeffrey G. Sharpe, David A. Wurz
  • Publication number: 20040064252
    Abstract: A method and system for processing pulse signals within an inertial device is provided. The inertial device may have inertial sensors, such as accelerometers and gyroscopes. The inertial sensors may output signals representative of a moving body's motion. The signals may require correction due to imperfections and other errors of the inertial sensors. The inertial device may receive signals from the inertial sensors and process the signals on a signal-by-signal basis so that when processing the signals, the inertial device at least recognizes which sensor output a signal and when the signal was output. The inertial device may then correlate signals that were output from the inertial sensors at selected times in order to transform the signals into a desired navigational frame of reference.
    Type: Application
    Filed: September 26, 2002
    Publication date: April 1, 2004
    Applicant: Honeywell International Inc.
    Inventors: Jeffrey Kirkland, Charles Eckert
  • Patent number: 6432486
    Abstract: A method treats an article and more specifically an aircraft surface in order to prevent icing and to provide a coating that emits very low volatile organic compounds (VOC) during application and setting. Icing on critical aircraft surfaces creates dangerous conditions that impair the stability of the aircraft. The specific areas are referred to as “cold-soak” conditions and some areas on the “leading edges” of the wings. The invention eliminates icing on these surfaces. Ice will not form on the surface of certain polymer coatings with low surface energy such as Teflon. This is a consequence of the high contact angle between the water droplet and the surface that establishes a non-wetting surface. The invention implements such coatings and a deposition process. The coating may be used for other objects such as automobiles, consumer products, such as refrigerators, stoves, etc.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: August 13, 2002
    Assignee: Delta Airlines, Inc.
    Inventors: Henry G. Paris, Fenghua Deng, Charles L. Liotta, Charles A. Eckert, Zhengui Liu
  • Publication number: 20010045462
    Abstract: A scanner can read machine-readable code on an object. A scanner has a scanning device, a data device, and a registration device. The scanning device can repetitively scan the code and provide a scan signal repetitively corresponding to at least fragments of the code. The data device is coupled to the scanning device and responds to its scan signal for repetitively storing it. The registration device is coupled to the data device for reconstructing the code from at least two of the fragments of the code by relatively shifting the code fragments until they are in registration.
    Type: Application
    Filed: March 2, 2001
    Publication date: November 29, 2001
    Inventors: Charles Lapinski, Charles Eckert, Richard Skokowski, James Cox, William Scott, Edward Chaleff, Jeffrey G. Sharpe, David A. Wurz
  • Patent number: 6100412
    Abstract: A process for the production of an epoxide and/or its corresponding vicinal diol by a reaction of an olefinic compound with hydrogen peroxide, wherein the reaction is performed in the presence of a carbon dioxide phase at a temperature and a pressure above the critical point of carbon dioxide.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: August 8, 2000
    Assignee: Degussa-Huls AG
    Inventors: Georg Thiele, Shane A. Nolan, James S. Brown, Jie Lu, Brandon C. Eason, Charles A. Eckert, Charles L. Liotta
  • Patent number: 6028018
    Abstract: An improved wet wipe includes a multiple layer basesheet to provide a unique combination of properties to the wipe which are not capable in a single layer basesheet. The layered basesheet includes at least two layers which include different fibers and have different physical properties. One of the layers may include polyethylene fibers to provide a soft, gentle feel for contacting the skin of the user during use while the other layer may include polypropylene fibers to provide strength and resiliency to the wipe to withstand the forces exerted by the user, and maintain its shape and integrity in use.
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: February 22, 2000
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: John David Amundson, John Charles Eckert, Mark George Everson, David Martin Jackson, Walter Theodore Schultz, Charles Allen Smith, David Craige Strack