Patents by Inventor Charles F. Rice

Charles F. Rice has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939557
    Abstract: The present disclosure concerns recombinant yeast host cells expressing heterologous enzymes for hydrolyzing flavor compounds glycosidically bound to a sugar molecule. The recombinant yeast host cells can be used in a subsequent production process to make alcoholic beverage products such as wines and beers.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: March 26, 2024
    Assignee: Danstar Ferment AG
    Inventors: Charles F. Rice, Aaron Argyros
  • Publication number: 20240084244
    Abstract: The present disclosure concerns recombinant yeast host cells having a first genetic modification to express a heterologous polypeptide or to over-express a native polypeptide. The recombinant yeast host cells also have a second genetic modification to at least partially mitigate the reduction in growth rate resulting from the expression of the heterologous polypeptide or the over-expression of the native polypeptide. The second genetic modification can be, for example, to favor the secretion of the heterologous or native polypeptide.
    Type: Application
    Filed: January 26, 2022
    Publication date: March 14, 2024
    Inventors: Zhiqing WANG, Aditi RANADE, Aaron ARGYROS, Allan FROEHLICH, Charles F. RICE
  • Publication number: 20230265463
    Abstract: The present disclosure relates to recombinant yeast host cells having (i) a first genetic modification for reducing the production of one or more native enzymes that function to produce glycerol or regulating glycerol synthesis and/or allowing the production of an heterologous glucoamylase and (ii) a second genetic modification for reducing the production of one or more native enzymes that function to produce trehalose or regulating trehalose synthesis and/or allowing the expression of an heterologous trehalase. The recombinant yeast host cells can be used to limit the production of (yeast-produced) trehalose (particularly extracellular trehalose) during fermentation and, in some embodiments, can increase the production of a fermentation product (such as, for example, ethanol).
    Type: Application
    Filed: March 14, 2023
    Publication date: August 24, 2023
    Inventors: Charles F. Rice, Ryan Skinner, Trisha Barrett, Aaron Argyros
  • Patent number: 11667680
    Abstract: The present disclosure relates to the modulation in the RAS/cAMP/PKA signaling pathway for maintaining the propagation efficiency and increasing fermentation efficiency of yeast cells. The present disclosure provides yeast cells having or engineered to exhibit a modulation in signaling in a RAS/cAMP/PKA pathway, depending on conditions. For example the yeast cells can be selected or genetically modified to express a mutated Ras1 protein, a mutated Ras2 protein, a mutated Ira1 protein and/or a mutated Ira2 protein, optionally in combination with specific promoters. Also provided herewith are methods for propagating the yeast cells as well as using the yeast cells to generate a fermented product (such as ethanol).
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: June 6, 2023
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: Michelle Oeser, Brooks Henningsen, Janet Fisher, Charles F. Rice, Allan Froehlich, Aaron Argyros, Rintze M. Zelle
  • Patent number: 11634734
    Abstract: The present disclosure relates to recombinant yeast host cells having (i) a first genetic modification for reducing the production of one or more native enzymes that function to produce glycerol or regulating glycerol synthesis and/or allowing the production of an heterologous glucoamylase and (ii) a second genetic modification for reducing the production of one or more native enzymes that function to produce trehalose or regulating trehalose synthesis and/or allowing the expression of an heterologous trehalase. The recombinant yeast host cells can be used to limit the production of (yeast-produced) trehalose (particularly extracellular trehalose) during fermentation and, in some embodiments, can increase the production of a fermentation product (such as, for example, ethanol).
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: April 25, 2023
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: Charles F. Rice, Ryan Skinner, Trisha Barrett, Aaron Argyros
  • Publication number: 20230091532
    Abstract: The present disclosure concerns using an inactivated yeast product made from a yeast host cell to increase the yield of a fermentation product from a fermenting yeast host cell. The inactivated yeast extract can be formulated as a liquefaction or fermentation additive and can be used to improve the yield of a fermented product such as ethanol.
    Type: Application
    Filed: March 13, 2019
    Publication date: March 23, 2023
    Inventors: Aaron Argyros, Charles F. Rice
  • Publication number: 20230063426
    Abstract: The present disclosure relates to proteases for improving alcoholic fermentation. The proteases are expressed from a recombinant host cell. The present disclosure also provides a population of recombinant host cells expressing an heterologous protease that can be used in combination with recombinant host cells expressing an heterologous glucoamylase and/or an heterologous glycerol reduction system.
    Type: Application
    Filed: September 6, 2022
    Publication date: March 2, 2023
    Inventors: Trisha Barrett, Charles F. Rice, Aaron Argyros
  • Patent number: 11572576
    Abstract: The present disclosure relates to recombinant yeast host cells having (i) a first genetic modification for reducing the production of one or more native enzymes that function to produce glycerol or regulating glycerol synthesis and/or allowing the production of an heterologous glucoamylase and (ii) a second genetic modification for reducing the production of one or more native enzymes that function to produce trehalose or regulating trehalose synthesis and/or allowing the expression of an heterologous trehalase. The recombinant yeast host cells can be used to limit the production of (yeast-produced) trehalose (particularly extracellular trehalose) during fermentation and, in some embodiments, can increase the production of a fermentation product (such as, for example, ethanol).
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: February 7, 2023
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: Charles F. Rice, Ryan Skinner, Trisha Barrett, Aaron Argyros
  • Publication number: 20230028975
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Application
    Filed: October 13, 2021
    Publication date: January 26, 2023
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Publication number: 20220267818
    Abstract: The present disclosure concerns the recombinant expression of thermostable alpha-amylases in a yeast host cell, compositions and yeast products made from the recombinant yeast host cells as well as the use of the thermostable alpha-amylase for hydrolyzing starch and ultimately making a fermentation product.
    Type: Application
    Filed: March 13, 2019
    Publication date: August 25, 2022
    Inventors: Aaron Argyros, Charles F. Rice
  • Publication number: 20220154113
    Abstract: The present disclosure concerns recombinant yeast host cells expressing one or more heterologous polypeptide for making a flavour compound and a native ethanol production pathway. The recombinant yeast host cells can be used in a subsequent production process to make flavoured alcoholic beverage products, such as beers.
    Type: Application
    Filed: March 1, 2019
    Publication date: May 19, 2022
    Inventors: Charles F. Rice, Emily Agnes Stonehouse, Nicholas Memmer, Jared Cameron Muysson, Bailey Morgan Carignan, Christopher J. Freeman, Brooks Henningsen, Hannah Lena Green, Aaron Argyros
  • Patent number: 11332728
    Abstract: The present disclosure relates to recombinant yeast strains capable of maintaining their robustness at high temperature as well as recombinant proteins expressed therefrom. The present disclosure also provides methods for using the recombinant yeast strain for making a fermentation product. The present disclosure further process a process for making recombinant yeast strains capable of maintaining their robustness at high temperature.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: May 17, 2022
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: Charles F. Rice, Ryan Skinner, Trisha Barrett, Aaron Argyros
  • Publication number: 20220090102
    Abstract: The present disclosure concerns the use of specific genetic modification(s) for improving sulfite tolerance in recombinant yeast host cells. The genetic modification(s) is (are) designed to allow the expression of an heterologous transcription factor favoring the expression of a SSU1 polypeptide and/or the expression of an heterologous SSU1 polypeptide in the recombinant yeast host cell(s).
    Type: Application
    Filed: December 22, 2017
    Publication date: March 24, 2022
    Inventors: Aaron Argyros, Charles F. Rice, Trisha Barrett, Michelle Oeser, Janet Fisher
  • Patent number: 11193130
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: December 7, 2021
    Assignees: Lallemand Hungary Liquidity Management LLC, Stellenbosch University
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Publication number: 20210292688
    Abstract: The present disclosure concerns recombinant yeast host cells expressing heterologous enzymes for hydrolyzing flavor compounds glycosidically bound to a sugar molecule. The recombinant yeast host cells can be used in a subsequent production process to make alcoholic beverage products such as wines and beers.
    Type: Application
    Filed: March 18, 2021
    Publication date: September 23, 2021
    Inventors: Charles F. Rice, Aaron Argyros
  • Publication number: 20210163998
    Abstract: The present disclosure relates to recombinant yeast host cells having (i) a first genetic modification for reducing the production of one or more native enzymes that function to produce glycerol or regulating glycerol synthesis and/or allowing the production of an heterologous glucoamylase and (ii) a second genetic modification for reducing the production of one or more native enzymes that function to produce trehalose or regulating trehalose synthesis and/or allowing the expression of an heterologous trehalase. The recombinant yeast host cells can be used to limit the production of (yeast-produced) trehalose (particularly extracellular trehalose) during fermentation and, in some embodiments, can increase the production of a fermentation product (such as, for example, ethanol).
    Type: Application
    Filed: February 8, 2021
    Publication date: June 3, 2021
    Inventors: Charles F. Rice, Ryan Skinner, Trisha Barrett, Aaron Argyros
  • Publication number: 20210163999
    Abstract: The present disclosure relates to recombinant yeast host cells having (i) a first genetic modification for reducing the production of one or more native enzymes that function to produce glycerol or regulating glycerol synthesis and/or allowing the production of an heterologous glucoamylase and (ii) a second genetic modification for reducing the production of one or more native enzymes that function to produce trehalose or regulating trehalose synthesis and/or allowing the expression of an heterologous trehalase. The recombinant yeast host cells can be used to limit the production of (yeast-produced) trehalose (particularly extracellular trehalose) during fermentation and, in some embodiments, can increase the production of a fermentation product (such as, for example, ethanol).
    Type: Application
    Filed: February 8, 2021
    Publication date: June 3, 2021
    Inventors: Charles F. Rice, Ryan Skinner, Trisha Barrett, Aaron Argyros
  • Patent number: 10947568
    Abstract: The present disclosure relates to recombinant yeast host cells having (i) a first genetic modification for reducing the production of one or more native enzymes that function to produce glycerol or regulating glycerol synthesis and/or allowing the production of an heterologous glucoamylase and (ii) a second genetic modification for reducing the production of one or more native enzymes that function to produce trehalose or regulating trehalose synthesis and/or allowing the expression of an heterologous trehalase. The recombinant yeast host cells can be used to limit the production of (yeast-produced) trehalose (particularly extracellular trehalose) during fermentation and, in some embodiments, can increase the production of a fermentation product (such as, for example, ethanol).
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: March 16, 2021
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: Charles F. Rice, Ryan Skinner, Trisha Barrett, Aaron Argyros
  • Publication number: 20210024909
    Abstract: The present disclosure relates to chimeric polypeptides for improving the hydrolysis of starch. The chimeric polypeptides has an alpha-amylase linked to a starch binding domain. The chimeric polypeptides can be provided in a purified form and/or can be expressed from 5 a recombinant host cell. The present disclosure also provides a population of recombinant host cells expressing the chimeric polypeptides.
    Type: Application
    Filed: March 25, 2019
    Publication date: January 28, 2021
    Inventors: Ryan Skinner, Charles F. Rice, Aaron Argyros
  • Publication number: 20200407758
    Abstract: The present disclosure relates to alpha-amylases for use in combination with glucoamylases for improving the hydrolysis of a raw starch. The alpha-amylases can be provided in a purified form and/or can be expressed from a recombinant host cell. The present disclosure also provides a population of recombinant host cells expressing the alpha-amylases to be used in combination with recombinant host cells expressing the glucoamylases.
    Type: Application
    Filed: June 30, 2017
    Publication date: December 31, 2020
    Inventors: Ryan Skinner, Charles F. Rice, Aaron Argyros