Patents by Inventor Charles Forrest Campbell

Charles Forrest Campbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240048166
    Abstract: A reinforcement learning receiver front-end (RL-RXFE) is disclosed having a low-noise amplifier (LNA) with adjustable supply voltage and adjustable bias voltages, a frequency selective limiter (FSL) coupled to the LNA and configured to attenuate undesired radio frequency (RF) bands and for sensing RF band power, and a combination of an analog-to-digital converter configured to convert an RF signal amplified by the LNA to a digital signal, a digital signal processor configured to generate spectrum information from the digital signal, and a baseband distortion by-product detector/sensor configured to generate distortion by-product information, and LNA dynamic information. A reinforcement learning processing circuitry receives and uses this information to perform reinforcement learning and to output control signals to the FSL and the LNA to maximize linearity and efficiency.
    Type: Application
    Filed: July 17, 2023
    Publication date: February 8, 2024
    Inventors: Kevin Wesley Kobayashi, Paul Edward Gorday, Charles Forrest Campbell, Gangadhar Burra
  • Patent number: 11777187
    Abstract: A method of operating a reconfigurable quadrature coupler is disclosed. The method includes determining a first switchable impedance to provide a second port reflection coefficient by operating a coupled port transformer, which coupled port transformer is coupled to a second port having a coupled port transmission line connected to a first transistor; determining a second switchable impedance to provide a third port reflection coefficient by operating an isolation port transformer, which isolation port transformer is coupled to a third port having an isolation port transmission line connected to a second transistor; and determining a fourth switchable impedance to provide a fourth port reflection coefficient by operating a through port transformer, which through port transformer is coupled to a fourth port having a through port transmission line connected to a third transistor, and switching on or off selected ones of the first, second, and third transistors by operating a controller.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: October 3, 2023
    Assignee: Qorvo US, Inc.
    Inventor: Charles Forrest Campbell
  • Publication number: 20230291364
    Abstract: Embedded blocking capacitor structures for wideband amplifier circuits are disclosed. A wideband amplifier circuit includes transistors that output radio frequency (RF) signals. An embedded blocking capacitor structure is operably connected between the terminals of the transistors and an RF output. The embedded blocking capacitor structure distributes a bias voltage to the terminals of the transistors and blocks the bias voltage from passing to the RF output. The embedded blocking capacitor structure also propagates an RF signal to an RF output.
    Type: Application
    Filed: March 8, 2022
    Publication date: September 14, 2023
    Inventor: Charles Forrest Campbell
  • Publication number: 20230074626
    Abstract: A method of operating a reconfigurable quadrature coupler is disclosed. The method includes determining a first switchable impedance to provide a second port reflection coefficient by operating a coupled port transformer, which coupled port transformer is coupled to a second port having a coupled port transmission line connected to a first transistor; determining a second switchable impedance to provide a third port reflection coefficient by operating an isolation port transformer, which isolation port transformer is coupled to a third port having an isolation port transmission line connected to a second transistor; and determining a fourth switchable impedance to provide a fourth port reflection coefficient by operating a through port transformer, which through port transformer is coupled to a fourth port having a through port transmission line connected to a third transistor, and switching on or off selected ones of the first, second, and third transistors by operating a controller.
    Type: Application
    Filed: November 15, 2022
    Publication date: March 9, 2023
    Inventor: Charles Forrest Campbell
  • Patent number: 11575373
    Abstract: Switch circuitry is disclosed having a series stack of transistors coupled between first and second port terminals. A string of gate resistors having a common gate terminal is coupled to gates of the series stack of transistors. A bias control transistor has a bias control terminal and first and second current terminals. The second control terminal is coupled to a switch control terminal configured to receive on-state and off-state control voltages that transition the series stack of transistors between passing a radio frequency signal and blocking the radio frequency signal from passing between the first and second port terminals, respectively. A string of diodes is coupled between the common gate terminal and the first current terminal, and a common gate resistor is coupled between the common gate terminal and the switch control terminal. The diodes contribute to actively generating additional negative gate bias as RF power level increases.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: February 7, 2023
    Assignee: Qorvo US, Inc.
    Inventor: Charles Forrest Campbell
  • Publication number: 20230006327
    Abstract: A reconfigurable quadrature coupler is disclosed. The reconfigurable quadrature coupler includes an input port transmission line connected to a first port, a coupled port transmission line and a coupled port transformer connected between the coupled port transmission line and a second port. The coupled port transformer is configured to have a selectable second port reflection coefficient. The reconfigurable quadrature coupler further includes an isolation port transmission line and an isolation port transformer connected between the isolation transmission line and a third port. The isolation port transformer is configured to have a selectable third port reflection coefficient. Also included is a through port transmission line and a through port transformer connected between the through port transmission line and a fourth port. The through port transformer is configured to have a selectable fourth port reflection coefficient.
    Type: Application
    Filed: July 1, 2021
    Publication date: January 5, 2023
    Inventor: Charles Forrest Campbell
  • Publication number: 20230006624
    Abstract: Disclosed is a reconfigurable power amplifier having a 2N?1 number of input-side reconfigurable quadrature couplers connected in a tree structure, wherein a 2(N?1) number of the input-side reconfigurable quadrature couplers have coupler output terminals, and a root of the tree structure is one of the input-side reconfigurable quadrature couplers having a main input terminal. Also included is a 2N?1 number of output-side reconfigurable quadrature couplers connected in a tree structure, wherein a 2(N?1) number of the output-side reconfigurable quadrature couplers have coupler input terminals, and a root of the tree structure is one of the output-side reconfigurable quadrature couplers having a main output terminal. Further included is a 2N number of constituent amplifiers divided into amplifier pairs having amplifier input terminals connected to corresponding ones of the coupler output terminals and having amplifier output terminals coupled to corresponding ones of the coupler input terminals.
    Type: Application
    Filed: July 1, 2021
    Publication date: January 5, 2023
    Inventor: Charles Forrest Campbell
  • Patent number: 11539108
    Abstract: A reconfigurable quadrature coupler is disclosed. The reconfigurable quadrature coupler includes an input port transmission line connected to a first port, a coupled port transmission line and a coupled port transformer connected between the coupled port transmission line and a second port. The coupled port transformer is configured to have a selectable second port reflection coefficient. The reconfigurable quadrature coupler further includes an isolation port transmission line and an isolation port transformer connected between the isolation transmission line and a third port. The isolation port transformer is configured to have a selectable third port reflection coefficient. Also included is a through port transmission line and a through port transformer connected between the through port transmission line and a fourth port. The through port transformer is configured to have a selectable fourth port reflection coefficient.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: December 27, 2022
    Assignee: Qorvo US, Inc.
    Inventor: Charles Forrest Campbell
  • Patent number: 11451226
    Abstract: Radio frequency (RF) switch circuitry is disclosed having a field-effect transistor with a drain, a source, and a gate, wherein the gate is driven by switch driver circuitry having a control terminal for receiving switch-on and switch-off signals and a driver terminal for outputting on-state and off-state voltages. The switch driver circuitry is configured to respond to the switch-on signal by generating the on-state voltage that when applied to the gate allows an RF signal to pass between the drain and the source and respond to the switch-off signal by generating the off-state voltage that when applied to the gate blocks the RF signal from passing between the drain and the source. A low-pass filter has an inductor coupled between the gate and the driver terminal, wherein a direct current (DC) path between the gate and the driver terminal has a total DC resistance of no more than 100 ?.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: September 20, 2022
    Assignee: Qorvo US, Inc.
    Inventors: Michael Roberg, Charles Forrest Campbell
  • Publication number: 20220085806
    Abstract: Radio frequency (RF) switch circuitry is disclosed having a field-effect transistor with a drain, a source, and a gate, wherein the gate is driven by switch driver circuitry having a control terminal for receiving switch-on and switch-off signals and a driver terminal for outputting on-state and off-state voltages. The switch driver circuitry is configured to respond to the switch-on signal by generating the on-state voltage that when applied to the gate allows an RF signal to pass between the drain and the source and respond to the switch-off signal by generating the off-state voltage that when applied to the gate blocks the RF signal from passing between the drain and the source. A low-pass filter has an inductor coupled between the gate and the driver terminal, wherein a direct current (DC) path between the gate and the driver terminal has a total DC resistance of no more than 100?.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Inventors: Michael Roberg, Charles Forrest Campbell
  • Patent number: 11245427
    Abstract: Disclosed is a frequency selective limiter with a switched multiplexer filter bank having a plurality of filters coupled between antenna and receiver ports, wherein the switched multiplexer filter bank is configured to enable and disable selected ones of the plurality of filters in response to control signals. First detector circuitry is coupled to the antenna port and configured to detect signal voltage at the antenna port and generate a first detector voltage. Second detector circuitry is coupled to the receiver port and configured to detect signal voltage at the receiver port and generate a second detector voltage, and a digital controller is coupled between the first detector circuitry, the second detector circuitry, and a control interface, wherein the digital controller is configured to limit interfering signals by sending control signals to the switched multiplexer filter bank in response to the first detector voltage and the second detector voltage.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: February 8, 2022
    Assignee: QORVO US, INC.
    Inventor: Charles Forrest Campbell
  • Patent number: 10903178
    Abstract: An isolation network for multi-way power divider/combiners is provided. The isolation network provides a planar power divider/combiner according to an ideal design. Embodiments realize the isolation network using a series of isolation channels, each with an airbridge spanning over an isolation resistor and a common resistor bus connecting the isolation resistors together. In this manner, a symmetric multi-way power divider/combiner can be provided with superior performance to conventional approaches, including high isolation and low insertion loss.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: January 26, 2021
    Assignee: Qorvo US, Inc.
    Inventor: Charles Forrest Campbell
  • Patent number: 10811750
    Abstract: An apparatus is disclosed having a circulator having a transmit port, a receive port, and a tuner port with tuner circuitry coupled between the tuner port and an antenna port. At least one analog control branch is coupled between the receive port and at least one control input of the tuner circuitry to generate at least one control signal from a transmit leakage signal leaking into the receive port. The tuner circuitry is configured to respond to the at least one control signal by automatically electronically tuning such that a cancellation signal of substantially equal amplitude and opposite phase of that of the transmit leakage signal is reflected through the tuner port and into the receive port, thereby reducing the transmit leakage signal to a level corresponding to an isolation of at least ?30 dB between the transmit port and the receive port.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: October 20, 2020
    Assignee: Qorvo US, Inc.
    Inventor: Charles Forrest Campbell
  • Patent number: 10715085
    Abstract: A reconfigurable low-noise amplifier (LNA) is disclosed. The reconfigurable LNA includes amplifier circuitry having a gate terminal coupled to an input terminal, a source terminal coupled to a fixed voltage node, and a drain terminal coupled to an output terminal. The reconfigurable LNA further includes a gamma inverting network (GIN) coupled between the input terminal and the fixed voltage node, wherein the GIN has a first switch configured to disable the GIN during operation at first frequencies within a lower frequency band relative to a higher frequency band and to enable the GIN during operation at second frequencies within the higher frequency band.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: July 14, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Kevin Wesley Kobayashi, Charles Forrest Campbell
  • Patent number: 10637527
    Abstract: A sequentially switched bulk acoustic wave (BAW) delay line circulator is disclosed herein. A circulator circuit is implemented with semiconductor components in order to provide a compact, low cost solution for simultaneous signal transmission and reception over a single antenna. For example, the circulator circuit can include a transmit (TX) port, a receive (RX) port, and an antenna port. Antenna switching circuitry selectively couples the antenna port to two or more BAW delay lines, and TX/RX switching circuitry selectively couples the BAW delay lines to the TX port or the RX port. The BAW delay lines function as memory to store TX and RX signals long enough for the antenna switching circuitry, a TX switch, and a RX switch to be switched in sequence and route the TX signals from the TX port to the antenna port and route the RX signals from the antenna port to the RX port.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: April 28, 2020
    Assignee: Qorvo US, Inc.
    Inventor: Charles Forrest Campbell
  • Publication number: 20200127658
    Abstract: Switch circuitry is disclosed having a series stack of transistors coupled between first and second port terminals. A string of gate resistors having a common gate terminal is coupled to gates of the series stack of transistors. A bias control transistor has a bias control terminal and first and second current terminals. The second control terminal is coupled to a switch control terminal configured to receive on-state and off-state control voltages that transition the series stack of transistors between passing a radio frequency signal and blocking the radio frequency signal from passing between the first and second port terminals, respectively. A string of diodes is coupled between the common gate terminal and the first current terminal, and a common gate resistor is coupled between the common gate terminal and the switch control terminal. The diodes contribute to actively generating additional negative gate bias as RF power level increases.
    Type: Application
    Filed: December 7, 2018
    Publication date: April 23, 2020
    Inventor: Charles Forrest Campbell
  • Publication number: 20200083583
    Abstract: An apparatus is disclosed having a circulator having a transmit port, a receive port, and a tuner port with tuner circuitry coupled between the tuner port and an antenna port. At least one analog control branch is coupled between the receive port and at least one control input of the tuner circuitry to generate at least one control signal from a transmit leakage signal leaking into the receive port. The tuner circuitry is configured to respond to the at least one control signal by automatically electronically tuning such that a cancellation signal of substantially equal amplitude and opposite phase of that of the transmit leakage signal is reflected through the tuner port and into the receive port, thereby reducing the transmit leakage signal to a level corresponding to an isolation of at least ?30 dB between the transmit port and the receive port.
    Type: Application
    Filed: January 18, 2019
    Publication date: March 12, 2020
    Inventor: Charles Forrest Campbell
  • Publication number: 20190393924
    Abstract: A sequentially switched bulk acoustic wave (BAW) delay line circulator is disclosed herein. A circulator circuit is implemented with semiconductor components in order to provide a compact, low cost solution for simultaneous signal transmission and reception over a single antenna. For example, the circulator circuit can include a transmit (TX) port, a receive (RX) port, and an antenna port. Antenna switching circuitry selectively couples the antenna port to two or more BAW delay lines, and TX/RX switching circuitry selectively couples the BAW delay lines to the TX port or the RX port. The BAW delay lines function as memory to store TX and RX signals long enough for the antenna switching circuitry, a TX switch, and a RX switch to be switched in sequence and route the TX signals from the TX port to the antenna port and route the RX signals from the antenna port to the RX port.
    Type: Application
    Filed: October 23, 2018
    Publication date: December 26, 2019
    Inventor: Charles Forrest Campbell
  • Publication number: 20190341887
    Abstract: A reconfigurable low-noise amplifier (LNA) is disclosed. The reconfigurable LNA includes amplifier circuitry having a gate terminal coupled to an input terminal, a source terminal coupled to a fixed voltage node, and a drain terminal coupled to an output terminal. The reconfigurable LNA further includes a gamma inverting network (GIN) coupled between the input terminal and the fixed voltage node, wherein the GIN has a first switch configured to disable the GIN during operation at first frequencies within a lower frequency band relative to a higher frequency band and to enable the GIN during operation at second frequencies within the higher frequency band.
    Type: Application
    Filed: July 12, 2019
    Publication date: November 7, 2019
    Inventors: Kevin Wesley Kobayashi, Charles Forrest Campbell
  • Patent number: 10396714
    Abstract: A reconfigurable low-noise amplifier (LNA) is disclosed. The reconfigurable LNA includes amplifier circuitry having a gate terminal coupled to an input terminal, a source terminal coupled to a fixed voltage node, and a drain terminal coupled to an output terminal. The reconfigurable LNA further includes a gamma inverting network (GIN) coupled between the input terminal and the fixed voltage node, wherein the GIN has a first switch configured to disable the GIN during operation at first frequencies within a lower frequency band relative to a higher frequency band and to enable the GIN during operation at second frequencies within the higher frequency band.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: August 27, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Kevin Wesley Kobayashi, Charles Forrest Campbell