Patents by Inventor Charles G. Gilbert

Charles G. Gilbert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10297919
    Abstract: An antenna is provided from a dielectric wedge waveguide having an AMC wall feed structure 15 coupled thereto through a transition which matches the impedance of the AMC feed structure to dielectric wedge so as to ensure efficient transmission of RF signals between the AMC wall feed structure and the dielectric wedge. In some embodiments, the antenna may be implemented as a flush mounted or conformal antenna on an outer surface of a supporting platform.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: May 21, 2019
    Assignee: Raytheon Company
    Inventors: Jackson Ng, Charles G. Gilbert, Sergio A. Pizarro
  • Patent number: 10249953
    Abstract: A fixed beam ramp electromagnetic band gap (EBG) antenna including a radiating element and an electromagnetic band gap (EBG) structure both disposed within a ramped cavity. The cavity is designed with the ramp leading to the EBG structure disposed about a base of the cavity. The radiating element can be disposed above the EBG structure and the EBG structure may have a plurality of unit cells. The EBG structure can be provided both, horizontally on the floor of the cavity and vertically along a back wall of the cavity. The use of both horizontal and vertical EBG structures combined with the ramped cavity increases the bandwidth and enhances the beam steering of the antenna system.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: April 2, 2019
    Assignee: RAYTHEON COMPANY
    Inventors: Jackson Ng, Charles G. Gilbert, Jack H. Anderson, Robyn Jimenez
  • Patent number: 9912073
    Abstract: Presently disclosed is an antenna system having an array of ridged waveguide Vivaldi radiator (RWVR) antenna elements fed through a corporate network of suspended air striplines (SAS). The SAS transfers the electromagnetic energy to the radiating element via the ridged waveguide coupler. The Vivaldi radiator matches the output impedance of the ridged waveguide coupler/SAS to the impedance of the surrounding medium. Because the coupling method and the radiating elements are wideband mediums, this antenna array is capable of wideband operation. The physical dimensions of the resulting array are also not as sensitive to its electrical performance as other antenna designs since the bandwidth is quite large, reducing the occurrence of an out-of-specification antenna due to manufacturing tolerance build-up. This also reduces the complexity of the manufacturing process, which in turn lowers cost.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: March 6, 2018
    Assignee: Raytheon Company
    Inventors: Joseph M. Anderson, Jared W. Jordan, Charles G. Gilbert
  • Patent number: 9748665
    Abstract: Presently disclosed is an antenna system having an array of ridged waveguide Vivaldi radiator (RWVR) antenna elements fed through a corporate network of suspended air striplines (SAS) with an electromagnetic bandgap (EBG) ground plane surrounding the ridged waveguide transition. The SAS transfers the electromagnetic energy to the radiating element via the ridged waveguide coupler. The Vivaldi radiator matches the output impedance of the ridged waveguide coupler/SAS to the intrinsic impedance of the surrounding medium. The EBG, which may be comprised of a photonic bandgap material or other metamaterial, allows for better frequency and bandwidth performance in a lower-profile array package, thereby reducing size and weight of the array for applications requiring small size and or low-inertia packaging. In alternate embodiments, radiating elements other than Vivaldi radiators may be used. This configuration also reduces the complexity of the manufacturing process, which in turn lowers cost.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: August 29, 2017
    Assignee: Raytheon Company
    Inventors: Joseph M. Anderson, Jared W. Jordan, Charles G. Gilbert
  • Publication number: 20170133762
    Abstract: A fixed beam ramp electromagnetic band gap (EBG) antenna including a radiating element and an electromagnetic band gap (EBG) structure both disposed within a ramped cavity. The cavity is designed with the ramp leading to the EBG structure disposed about a base of the cavity. The radiating element can be disposed above the EBG structure and the EBG structure may have a plurality of unit cells. The EBG structure can be provided both, horizontally on the floor of the cavity and vertically along a back wall of the cavity. The use of both horizontal and vertical EBG structures combined with the ramped cavity increases the bandwidth and enhances the beam steering of the antenna system.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Applicant: RAYTHEON COMPANY
    Inventors: Jackson Ng, Charles G. Gilbert, Jack H. Anderson, Robyn Jimenez
  • Patent number: 9450311
    Abstract: A rotationally polarized antenna includes a radiating element that is held in a skewed orientation with respect to an underlying polarization-dependent electromagnetic band gap (PDEBG) structure. The radiating element and the PDEBG structure are both housed within a conductive cavity. The radiating element, the PDEBG structure, and the cavity are designed together to achieve an antenna having improved operational characteristics (e.g., an enhanced circular polarization bandwidth, etc.). In some embodiments, the antenna may be implemented as a flush mounted or conformal antenna on an outer surface of a supporting platform.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: September 20, 2016
    Assignee: Raytheon Company
    Inventors: Jackson Ng, Charles G. Gilbert
  • Patent number: 9323877
    Abstract: An antenna includes a radiating element that is held in a fixed orientation with respect to an underlying electromagnetic band gap (EBG) structure. In one embodiment, the radiating element and the EBG structure are both housed within a conductive cavity. The radiating element, the EBG structure, and the cavity are designed together to achieve an antenna having improved operational characteristics (e.g., enhanced bandwidth, beam steering, etc.). In some embodiments, the antenna may be implemented as a flush mounted or conformal antenna on an outer surface of a supporting platform.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: April 26, 2016
    Assignee: Raytheon Company
    Inventors: Jackson Ng, Charles G. Gilbert
  • Publication number: 20160064825
    Abstract: An antenna is provided from a dielectric wedge waveguide having an AMC wall feed structure 15 coupled thereto through a transition which matches the impedance of the AMC feed structure to dielectric wedge so as to ensure efficient transmission of RF signals between the AMC wall feed structure and the dielectric wedge. In some embodiments, the antenna may be implemented as a flush mounted or conformal antenna on an outer surface of a supporting platform.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 3, 2016
    Inventors: Jackson Ng, Charles G. Gilbert, Sergio A. Pizarro
  • Patent number: 9263791
    Abstract: A scanned radio frequency (RF) antenna having a small volume is described.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: February 16, 2016
    Assignee: Raytheon Company
    Inventors: Joseph M. Anderson, Herbert A. Leach, Charles G. Gilbert
  • Publication number: 20150130673
    Abstract: An antenna includes a radiating element that is held in a fixed orientation with respect to an underlying electromagnetic band gap (EBG) structure. In one embodiment, the radiating element and the EBG structure are both housed within a conductive cavity. The radiating element, the EBG structure, and the cavity are designed together to achieve an antenna having improved operational characteristics (e.g., enhanced bandwidth, beam steering, etc.). In some embodiments, the antenna may be implemented as a flush mounted or conformal antenna on an outer surface of a supporting platform.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 14, 2015
    Applicant: Raytheon Company
    Inventors: Jackson Ng, Charles G. Gilbert
  • Publication number: 20150029062
    Abstract: A rotationally polarized antenna includes a radiating element that is held in a skewed orientation with respect to an underlying polarization-dependent electromagnetic band gap (PDEBG) structure. The radiating element and the PDEBG structure are both housed within a conductive cavity. The radiating element, the PDEBG structure, and the cavity are designed together to achieve an antenna having improved operational characteristics (e.g., an enhanced circular polarization bandwidth, etc.). In some embodiments, the antenna may be implemented as a flush mounted or conformal antenna on an outer surface of a supporting platform.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 29, 2015
    Applicant: Raytheon Company
    Inventors: Jackson Ng, Charles G. Gilbert
  • Publication number: 20140009346
    Abstract: A scanned radio frequency (RF) antenna having a small volume is described.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 9, 2014
    Applicant: Raytheon Company
    Inventors: Joseph M. Anderson, Herbert A. Leach, Charles G. Gilbert
  • Publication number: 20130241791
    Abstract: Presently disclosed is an antenna system having an array of ridged waveguide Vivaldi radiator (RWVR) antenna elements fed through a corporate network of suspended air striplines (SAS) with an electromagnetic bandgap (EBG) ground plane surrounding the ridged waveguide transition. The SAS transfers the electromagnetic energy to the radiating element via the ridged waveguide coupler. The Vivaldi radiator matches the output impedance of the ridged waveguide coupler/SAS to the intrinsic impedance of the surrounding medium. The EBG, which may be comprised of a photonic bandgap material or other metamaterial, allows for better frequency and bandwidth performance in a lower-profile array package, thereby reducing size and weight of the array for applications requiring small size and or low-inertia packaging. In alternate embodiments, radiating elements other than Vivaldi radiators may be used. This configuration also reduces the complexity of the manufacturing process, which in turn lowers cost.
    Type: Application
    Filed: April 27, 2012
    Publication date: September 19, 2013
    Applicant: Raytheon Company
    Inventors: Joseph M. Anderson, Jared W. Jordan, Charles G. Gilbert
  • Patent number: 6922177
    Abstract: An antenna array comprising a ground plane and a plurality of elements mounted thereon, said elements being capable of emitting and receiving ultra wideband emissions. Elements are arrayed on the ground plane in two parallel rows, a transmitting row, and a receiving row, such that a given element in the receiving row is aligned in at least one direction with a corresponding element in the transmitting row. Additionally, the elements are configured on the ground plane to elicit a symmetrical product response in the azimuthal plane, and to produce horizontally polarized signals. An alternative embodiment places the elements with unique inter-element spacing within the rows. An embodiment comprises a fence structure between rows. A method for use comprises the step of transmitting a signal via an element in the transmitting row and receiving said signal through an element in the receiving row, not aligned with the transmitting element.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: July 26, 2005
    Assignee: Time Domain Corporation
    Inventors: Mark A. Barnes, Charles G. Gilbert, Herbert U. Fluhler, Hans G. Schantz, Soumya K. Nag, David M. Dickson
  • Patent number: 6667724
    Abstract: An antenna array comprising a ground plane and a plurality of elements mounted thereon, said elements being capable of emitting and receiving ultra wideband emissions. Elements are arrayed on the ground plane in two parallel rows, a transmitting row, and a receiving row, such that a given element in the receiving row is aligned in at least one direction with a corresponding element in the transmitting row. Additionally, the elements are configured on the ground plane to elicit a symmetrical product response in the azimuthal plane, and to produce horizontally polarized signals. An alternative embodiment places the elements with unique inter-element spacing within the rows. An embodiment comprises a fence structure between rows. A method for use comprises the step of transmitting a signal via an element in the transmitting row and receiving said signal through an element in the receiving row, not aligned with the transmitting element.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: December 23, 2003
    Assignee: Time Domain Corporation
    Inventors: Mark A. Barnes, Charles G. Gilbert, Herbert U. Fluhler, Hans G. Schantz, Soumya K. Nag, David M. Dickson
  • Publication number: 20020190915
    Abstract: An antenna array comprising a ground plane and a plurality of elements mounted thereon, said elements being capable of emitting and receiving ultra wideband emissions. Elements are arrayed on the ground plane in two parallel rows, a transmitting row, and a receiving row, such that a given element in the receiving row is aligned in at least one direction with a corresponding element in the transmitting row. Additionally, the elements are configured on the ground plane to elicit a symmetrical product response in the azimuthal plane, and to produce horizontally polarized signals. An alternative embodiment places the elements with unique interelement spacing within the rows. An embodiment comprises a fence structure between rows. A method for use comprises the step of transmitting a signal via an element in the transmitting row and receiving said signal through an element in the receiving row, not aligned with the transmitting element.
    Type: Application
    Filed: February 26, 2002
    Publication date: December 19, 2002
    Inventors: Mark A. Barnes, Charles G. Gilbert, Herbert U. Fluhler, Hans G. Schantz, Soumya K. Nag, David M. Dickson
  • Publication number: 20020145570
    Abstract: An antenna array comprising a ground plane and a plurality of elements mounted thereon, said elements being capable of emitting and receiving ultra wideband emissions. Elements are arrayed on the ground plane in two parallel rows, a transmitting row, and a receiving row, such that a given element in the receiving row is aligned in at least one direction with a corresponding element in the transmitting row. Additionally, the elements are configured on the ground plane to elicit a symmetrical product response in the azimuthal plane, and to produce horizontally polarized signals. An alternative embodiment places the elements with unique inter-element spacing within the rows. An embodiment comprises a fence structure between rows. A method for use comprises the step of transmitting a signal via an element in the transmitting row and receiving said signal through an element in the receiving row, not aligned with the transmitting element.
    Type: Application
    Filed: November 30, 2001
    Publication date: October 10, 2002
    Inventors: Mark A. Barnes, Charles G. Gilbert, Herbert U. Fluhler, Hans G. Schantz, Soumya K. Nag, David M. Dickson
  • Patent number: 6064665
    Abstract: CDMA (Code Division Multiple Access) communications systems and methods for performing a single to multiple frequency band conversion for mobile communications. The systems and methods include mixing a portion of a first CDMA signal in a first frequency band with a reference signal to convert a portion of the first CDMA signal to a second frequency band. The converted portion and the other portion of the first frequency band can then be transmitted. The systems and methods further include filtering a portion of a second CDMA signal having frequency components in multiple frequency bands to provide a filtered CDMA signal in the first frequency band. The filtered CDMA signal is then mixed to convert it to the second frequency band for receiver processing.
    Type: Grant
    Filed: October 22, 1997
    Date of Patent: May 16, 2000
    Assignees: U S West, Inc., MediaOne Group, Inc.
    Inventors: Wayne A. Leuck, Charles G. Gilbert, Ruvin I. Lerman
  • Patent number: 4843403
    Abstract: The subject invention relates to an antenna having broadband characteristics. The antenna is a dual notch device capable of receiving or transmitting electromagnetic waves comprising a substrate, an upper planer conducting antenna element disposed on one side of the surface of said substrate and having a first curved edge, a second conducting antenna element disposed on the other side of said substrate and having a second curved edge, said first and second curved edges being closely related to one another and spaced apart in close proximity at one point to define a feed-point therebetween with adjacent curved edges gradually tapering outwardly therefrom to define flared notches interfacing one another and interconnected by said gap.
    Type: Grant
    Filed: July 29, 1987
    Date of Patent: June 27, 1989
    Assignee: Ball Corporation
    Inventors: Farzin Lalezari, Charles G. Gilbert, John M. Rogers