Patents by Inventor Charles Gealer

Charles Gealer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11217516
    Abstract: A stacked-chip apparatus includes a package substrate and an interposer with a chip stack disposed with a standoff that matches the interposer. A package-on-package stacked-chip apparatus includes a top package disposed on the interposer.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: January 4, 2022
    Assignee: Intel Corporation
    Inventors: Sriram Muthukumar, Charles A. Gealer
  • Patent number: 10555417
    Abstract: Disclosed are embodiments of a system-level assembly including an integrated circuit (IC) die directly attached to a mainboard. An IC die directly attached to a mainboard or other circuit board may be referred to as a direct-chip attach (DCA) die. A package is disposed over at least a portion of the DCA die and coupled with the mainboard. The package includes one or more other IC die disposed on a substrate. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: February 4, 2020
    Assignee: Intel Corporation
    Inventors: Damion Searls, Weston C. Roth, Margaret D. Ramirez, James D. Jackson, Rainer E. Thomas, Charles A. Gealer
  • Publication number: 20190182958
    Abstract: Disclosed are embodiments of a system-level assembly including an integrated circuit (IC) die directly attached to a mainboard. An IC die directly attached to a mainboard or other circuit board may be referred to as a direct-chip attach (DCA) die. A package is disposed over at least a portion of the DCA die and coupled with the mainboard. The package includes one or more other IC die disposed on a substrate. Other embodiments are described and claimed.
    Type: Application
    Filed: February 20, 2019
    Publication date: June 13, 2019
    Inventors: Damion SEARLS, Weston C. ROTH, Margaret D. RAMIREZ, James D. JACKSON, Rainer E. THOMAS, Charles A. GEALER
  • Publication number: 20190148275
    Abstract: A stacked-chip apparatus includes a package substrate and an interposer with a chip stack disposed with a standoff that matches the interposer. A package-on-package stacked-chip apparatus includes a top package disposed on the interposer.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 16, 2019
    Inventors: Sriram MUTHUKUMAR, Charles A. GEALER
  • Patent number: 10251273
    Abstract: Disclosed are embodiments of a system-level assembly including an integrated circuit (IC) die directly attached to a mainboard. An IC die directly attached to a mainboard or other circuit board may be referred to as a direct-chip attach (DCA) die. A package is disposed over at least a portion of the DCA die and coupled with the mainboard. The package includes one or more other IC die disposed on a substrate. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: April 2, 2019
    Assignee: Intel Corporation
    Inventors: Damion Searls, Weston C. Roth, Margaret D. Ramirez, James D. Jackson, Rainer E. Thomas, Charles A. Gealer
  • Patent number: 10186480
    Abstract: A stacked-chip apparatus includes a package substrate and an interposer with a chip stack disposed with a standoff that matches the interposer. A package-on-package stacked-chip apparatus includes a top package disposed on the interposer.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: January 22, 2019
    Assignee: INTEL CORPORATION
    Inventors: Sriram Muthukumar, Charles A. Gealer
  • Publication number: 20180263117
    Abstract: This disclosure relates generally to devices, systems, and methods for making a flexible microelectronic assembly. In an example, a polymer is molded over a microelectronic component, the polymer mold assuming a substantially rigid state following the molding. A routing layer is formed with respect to the microelectronic component and the polymer mold, the routing layer including traces electrically coupled to the microelectronic component. An input is applied to the polymer mold, the polymer mold transitioning from the substantially rigid state to a substantially flexible state upon application of the input.
    Type: Application
    Filed: November 13, 2017
    Publication date: September 13, 2018
    Inventors: Sasha N. Oster, Robert L. Sankman, Charles Gealer, Omkar Karhade, John S. Guzek, Ravindranath V. Mahajan, James C. Matayabas, JR., Johanna M. Swan, Feras Eid, Shawna Liff, Timothy McIntosh, Telesphor Kamgaing, Adel A. Elsherbini, Kemal Aygun
  • Patent number: 9842832
    Abstract: A microelectronic package of the present description may comprises a first microelectronic device having at least one row of connection structures electrically connected thereto and a second microelectronic device having at least one row of connection structures electrically connected thereto, wherein the connection structures within the at least one first microelectronic device row are aligned with corresponding connection structures within the at least one second microelectronic device row in an x-direction.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: December 12, 2017
    Assignee: Intel Corporation
    Inventors: Omkar G. Karhade, John S. Guzek, Johanna M. Swan, Christopher J. Nelson, Nitin A. Deshpande, William J. Lambert, Charles A. Gealer, Feras Eid, Islam A. Salama, Kemal Aygun, Sasha N. Oster, Tyler N. Osborn
  • Patent number: 9820384
    Abstract: This disclosure relates generally to devices, systems, and methods for making a flexible microelectronic assembly. In an example, a polymer is molded over a microelectronic component, the polymer mold assuming a substantially rigid state following the molding. A routing layer is formed with respect to the microelectronic component and the polymer mold, the routing layer including traces electrically coupled to the microelectronic component. An input is applied to the polymer mold, the polymer mold transitioning from the substantially rigid state to a substantially flexible state upon application of the input.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: November 14, 2017
    Assignee: Intel Corporation
    Inventors: Sasha Oster, Robert L. Sankman, Charles Gealer, Omkar Karhade, John S. Guzek, Ravi V. Mahajan, James C. Matayabas, Jr., Johanna Swan, Feras Eid, Shawna Liff, Timothy McIntosh, Telesphor Kamgaing, Adel Elsherbini, Kemal Aygun
  • Patent number: 9666549
    Abstract: Generally discussed herein are systems and apparatuses that include an extended TSBA ball and techniques for making the same. According to an example, a technique can include forming a circuit substrate including forming a circuit on a substrate, the circuit exposed along an upper surface of the substrate, wherein the substrate is for coupling the circuit with a die along a lower surface of the circuit substrate. A molding can be formed onto an upper surface of the circuit substrate, over the circuit of the circuit substrate. An opening can be defined in the molding so that the opening can extend to a top surface of the molding to at least a portion of the circuit. Solder can be formed into the opening, including conforming the solder to the opening and the circuit substrate.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: May 30, 2017
    Assignee: Intel Corporation
    Inventors: Chia-Pin Chiu, Xiaorong Xiong, Linda Zhang, Robert Nickerson, Charles Gealer
  • Patent number: 9617148
    Abstract: Integration of sensor chips with integrated circuit (IC) chips. At least a first sensor chip including a first sensor is affixed to a first side of an interposer to hermetically seal the first sensor within a first cavity. An IC chip is affixed to a second side of the interposer opposite the first sensor, the IC chip is electrically coupled to the first sensor by a through via in the interposer. In embodiments, the first sensor includes a MEMS device and the IC chip comprises a circuit to amplify a signal from the MEMS device. The interposer may be made of glass, with the first sensor chip and the IC chip flip-chip bonded to the interposer by compression or solder. Lateral interconnect traces provide I/O between the devices on the interposer and/or a PCB upon which the interpose is affixed.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: April 11, 2017
    Assignee: Intel Corporation
    Inventors: Qing Ma, Johanna M. Swan, Min Tao, Charles A. Gealer, Edward T. Zarbock
  • Publication number: 20170012029
    Abstract: An apparatus including a die including a plurality of through silicon vias (TSV's) extending from a device side to a backside of the die; and a decoupling capacitor coupled to the TSV's. A method including providing a die including a plurality of through silicon vias (TSV's) extending from a device side to a backside of the die; coupling a decoupling capacitor to the backside of the die. An apparatus including a computing device including a package including a microprocessor including a device side and a backside with through silicon vias (TSV's) extending from the device side to the backside, and a decoupling capacitor coupled to the backside of the die; and a printed circuit board, wherein the package is coupled to the printed circuit board.
    Type: Application
    Filed: March 28, 2014
    Publication date: January 12, 2017
    Inventors: William J. LAMBERT, Robert L. SANKMAN, Tyler N. OSBORN, Charles A. GEALER
  • Publication number: 20160300824
    Abstract: A microelectronic package of the present description may comprises a first microelectronic device having at least one row of connection structures electrically connected thereto and a second microelectronic device having at least one row of connection structures electrically connected thereto, wherein the connection structures within the at least one first microelectronic device row are aligned with corresponding connection structures within the at least one second microelectronic device row in an x-direction.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 13, 2016
    Applicant: Intel Corporation
    Inventors: Omkar G. Karhade, John S. Guzek, Johanna M. Swan, Christopher J. Nelson, Nitin A. Deshpande, William J. Lambert, Charles A. Gealer, Feras Eid, Islam A. Salama, Kemal Aygun, Sasha N. Oster, Tyler N. Osborn
  • Publication number: 20160280539
    Abstract: Integration of sensor chips with integrated circuit (IC) chips. At least a first sensor chip including a first sensor is affixed to a first side of an interposer to hermetically seal the first sensor within a first cavity. An IC chip is affixed to a second side of the interposer opposite the first sensor, the IC chip is electrically coupled to the first sensor by a through via in the interposer. In embodiments, the first sensor includes a MEMS device and the IC chip comprises a circuit to amplify a signal from the MEMS device. The interposer may be made of glass, with the first sensor chip and the IC chip flip-chip bonded to the interposer by compression or solder. Lateral interconnect traces provide I/O between the devices on the interposer and/or a PCB upon which the interpose is affixed.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 29, 2016
    Inventors: Qing MA, Johanna M. SWAN, Min TAO, Charles A. GEALER, Edward T. ZARBOCK
  • Patent number: 9397071
    Abstract: A microelectronic package of the present description may comprises a first microelectronic device having at least one row of connection structures electrically connected thereto and a second microelectronic device having at least one row of connection structures electrically connected thereto, wherein the connection structures within the at least one first microelectronic device row are aligned with corresponding connection structures within the at least one second microelectronic device row in an x-direction.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: July 19, 2016
    Assignee: Intel Corporation
    Inventors: Omkar G. Karhade, John S. Guzek, Johanna M. Swan, Christopher J. Nelson, Nitin A. Deshpande, William J. Lambert, Charles A. Gealer, Feras Eid, Islam A. Salama, Kemal Aygun, Sasha N. Oster, Tyler N. Osborn
  • Patent number: 9368429
    Abstract: Integration of sensor chips with integrated circuit (IC) chips. At least a first sensor chip including a first sensor is affixed to a first side of an interposer to hermitically seal the first sensor within a first cavity. An IC chip is affixed to a second side of the interposer opposite the first sensor, the IC chip is electrically coupled to the first sensor by a through via in the interposer. In embodiments, the first sensor includes a MEMS device and the IC chip comprises a circuit to amplify a signal from the MEMS device. The interposer may be made of glass, with the first sensor chip and the IC chip flip-chip bonded to the interposer by compression or solder. Lateral interconnect traces provide I/O between the devices on the interposer and/or a PCB upon which the interpose is affixed.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: June 14, 2016
    Assignee: Intel Corporation
    Inventors: Qing Ma, Johanna M. Swan, Min Tao, Charles A. Gealer, Edward A. Zarbock
  • Publication number: 20160043056
    Abstract: A die assembly formed on a thin dielectric sheet is described. In one example, a first and a second die have interconnect areas. A dielectric sheet is over the interconnect areas of the first and the second die. Conductive vias in the dielectric sheet connect with pads of the interconnect areas. A build-up layer over the dielectric sheet includes routing to connect pads of the first die interconnect area to pads of the second die interconnect area through the conductive vias. The dies are mounted to a package substrate through the build-up layers, and a package cover is over the dies, the dielectric sheet, and the build-up layer.
    Type: Application
    Filed: October 19, 2015
    Publication date: February 11, 2016
    Applicant: INTEL CORPORATION
    Inventors: Chia-Pin Chiu, Qing Ma, Robert L. Sankman, Paul B. Fischer, Patrick Morrow, William J. Lambert, Charles A. Gealer, Tyler Osborn
  • Publication number: 20160043049
    Abstract: Generally discussed herein are systems and apparatuses that include an extended TSBA ball and techniques for making the same. According to an example, a technique can include forming a circuit substrate including forming a circuit on a substrate, the circuit exposed along an upper surface of the substrate, wherein the substrate is for coupling the circuit with a die along a lower surface of the circuit substrate. A molding can be formed onto an upper surface of the circuit substrate, over the circuit of the circuit substrate. An opening can be defined in the molding so that the opening can extend to a top surface of the molding to at least a portion of the circuit. Solder can be formed into the opening, including conforming the solder to the opening and the circuit substrate.
    Type: Application
    Filed: October 9, 2015
    Publication date: February 11, 2016
    Inventors: Chia-Pin Chiu, Xiaorong Xiong, Linda Zhang, Robert Nickerson, Charles Gealer
  • Patent number: 9177831
    Abstract: A die assembly formed on a thin dielectric sheet is described. In one example, a first and a second die have interconnect areas. A dielectric sheet, such as glass, silicon, or oxidized metal is applied over the interconnect areas of dies. Conductive vias are formed in the dielectric sheet to connect with pads of the interconnect areas. A build-up layer includes routing to connect pads of the first die interconnect area to pads of the second die interconnect area through the conductive vias and a cover is applied over the dies, the dielectric sheet, and the build-up layer.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 3, 2015
    Assignee: Intel Corporation
    Inventors: Chia-Pin Chiu, Qing Ma, Robert L. Sankman, Paul B. Fischer, Patrick Morrow, William J. Lambert, Charles A. Gealer, Tyler Osborn
  • Patent number: 9159690
    Abstract: Generally discussed herein are systems and apparatuses that include an extended TSBA ball and techniques for making the same. A package can include a chip package situated below a lower surface of a first substrate, the package including a die situated on a top surface of a second substrate, a molding disposed over the upper surface of the second substrate, the molding extending over the second die and including an opening extending from an upper surface of the molding towards an upper surface of the second substrate, wherein the opening is configured to admit at least a portion of the solder ball, and a solder column electrically and mechanically coupled to the second substrate, situated in the opening, conforming to the cylinder, and including at least two layers of solder with flux therebetween.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: October 13, 2015
    Assignee: Intel Corporation
    Inventors: Chia-Pin Chiu, Xiaorong Xiong, Linda Zhang, Robert Nickerson, Charles Gealer