Patents by Inventor Charles Gordon Smith

Charles Gordon Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9171966
    Abstract: The present invention generally relates to methods for increasing the lifetime of MEMS devices by reducing the landing velocity on switching by introducing gas into the cavity surrounding the switching element of the MEMS device. The gas is introduced using ion implantation into a cavity close to the cavity housing the switching element and connected to that cavity by a channel through which the gas can flow from one cavity to the other. The implantation energy is chosen to implant many of the atoms close to the inside roof and floor of the cavity so that on annealing those atoms diffuse into the cavity. The gas provides gas damping which reduces the kinetic energy of the switching MEMS device which then should have a longer lifetime.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: October 27, 2015
    Assignee: CAVENDISH KINETICS, INC.
    Inventors: Willibrordus Gerardus Van Den Hoek, Robertus Petrus Van Kampen, Richard L. Knipe, Charles Gordon Smith
  • Patent number: 8861218
    Abstract: Embodiments disclosed herein generally include using a large number of small MEMS devices to replace the function of an individual larger MEMS device or digital variable capacitor. The large number of smaller MEMS devices perform the same function as the larger device, but because of the smaller size, they can be encapsulated in a cavity using complementary metal oxide semiconductor (CMOS) compatible processes. Signal averaging over a large number of the smaller devices allows the accuracy of the array of smaller devices to be equivalent to the larger device. The process is exemplified by considering the use of a MEMS based accelerometer switch array with an integrated analog to digital conversion of the inertial response. The process is also exemplified by considering the use of a MEMS based device structure where the MEMS devices operate in parallel as a digital variable capacitor.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: October 14, 2014
    Assignee: Cavendish Kinetics Inc.
    Inventors: Charles Gordon Smith, Richard L. Knipe, Vikram Joshi, Roberto Gaddi, Anartz Unamuno, Robertus Petrus Van Kampen
  • Publication number: 20140246740
    Abstract: The present invention generally relates to methods for increasing the lifetime of MEMS devices by reducing the landing velocity on switching by introducing gas into the cavity surrounding the switching element of the MEMS device. The gas is introduced using ion implantation into a cavity close to the cavity housing the switching element and connected to that cavity by a channel through which the gas can flow from one cavity to the other. The implantation energy is chosen to implant many of the atoms close to the inside roof and floor of the cavity so that on annealing those atoms diffuse into the cavity. The gas provides gas damping which reduces the kinetic energy of the switching MEMS device which then should have a longer lifetime.
    Type: Application
    Filed: April 19, 2012
    Publication date: September 4, 2014
    Inventors: Willibrordus Gerardus Van Den Hoek, Robertus Petrus Van Kampen, Richard L. Knipe, Charles Gordon Smith
  • Patent number: 8786933
    Abstract: The current disclosure shows how to make a fast switching array of mirrors for projection displays. Because the mirror does not have a via in the middle connecting to the underlying spring support, there is an improved contrast ratio that results from not having light scatter off the legs or vias like existing technologies. Because there are no supporting contacts, the mirror can be made smaller making smaller pixels that can be used to make higher density displays. In addition, because there is not restoring force from any supporting spring support, the mirror stays in place facing one or other direction due to adhesion. This means there is no need to use a voltage to hold the mirror in position. This means that less power is required to run the display.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: July 22, 2014
    Assignee: Cavendish Kinetics, Inc.
    Inventors: Charles Gordon Smith, Richard L. Knipe
  • Publication number: 20140036345
    Abstract: The current disclosure shows how to make a fast switching array of mirrors for projection displays. Because the mirror does not have a via in the middle connecting to the underlying spring support, there is an improved contrast ratio that results from not having light scatter off the legs or vias like existing technologies. Because there are no supporting contacts, the mirror can be made smaller making smaller pixels that can be used to make higher density displays. In addition, because there is not restoring force from any supporting spring support, the mirror stays in place facing one or other direction due to adhesion. This means there is no need to use a voltage to hold the mirror in position. This means that less power is required to run the display.
    Type: Application
    Filed: July 15, 2013
    Publication date: February 6, 2014
    Applicant: CAVENDISH KINETICS INC.
    Inventors: Charles Gordon SMITH, Richard L. KNIPE
  • Patent number: 8488230
    Abstract: The current disclosure shows how to make a fast switching array of mirrors for projection displays. Because the mirror does not have a via in the middle connecting to the underlying spring support, there is an improved contrast ratio that results from not having light scatter off the legs or vias like existing technologies. Because there are no supporting contacts, the mirror can be made smaller making smaller pixels that can be used to make higher density displays. In addition, because there is not restoring force from any supporting spring support, the mirror stays in place facing one or other direction due to adhesion. This means there is no need to use a voltage to hold the mirror in position. This means that less power is required to run the display.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: July 16, 2013
    Assignee: CAVENDISH KINETICS, Inc.
    Inventors: Charles Gordon Smith, Richard L. Knipe
  • Patent number: 8289674
    Abstract: Embodiments disclosed herein generally solve a stiction problem in switching devices by using a series of pulses of force which take the switch from being strongly adhered to a landing electrode to the point where it is only weakly adhered. Once in the low adhesion state, the switch can then be pulled away from contact with a lower force provided by either the spring constant of the switch and/or the electrostatic forces resulting from low voltages applied to nearby electrodes.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: October 16, 2012
    Assignee: Cavendish Kinetics, Ltd.
    Inventors: Charles Gordon Smith, Richard L. Knipe
  • Publication number: 20110043892
    Abstract: The current disclosure shows how to make a fast switching array of mirrors for projection displays. Because the mirror does not have a via in the middle connecting to the underlying spring support, there is an improved contrast ratio that results from not having light scatter off the legs or vias like existing technologies. Because there are no supporting contacts, the mirror can be made smaller making smaller pixels that can be used to make higher density displays. In addition, because there is not restoring force from any supporting spring support, the mirror stays in place facing one or other direction due to adhesion. This means there is no need to use a voltage to hold the mirror in position. This means that less power is required to run the display.
    Type: Application
    Filed: August 24, 2010
    Publication date: February 24, 2011
    Inventors: Charles Gordon Smith, Richard L. Knipe
  • Patent number: 7867886
    Abstract: A method, in a complementary metal oxide semiconductor fabrication process, of creating a layered housing containing a micro-electromechanical system device, the method comprising the steps of providing a cavity in at least one layer of the housing, the cavity being accessible through via holes in a layer of insulating material deposited thereon, and the layer of insulating material being covered by a thin film layer of conductive material. The method further comprises the step of hydrophobically treating at least a portion of the inner surface of the cavity. Finally the method comprises the steps of submerging the wafer in an electroplating solution and electroplating a conductive layer onto the thin film layer of conductive material such that the cavity remains free of electroplating solution.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: January 11, 2011
    Assignee: Cavendish Kinetics, Ltd
    Inventors: Charles Gordon Smith, Robertus P. Van Kampen
  • Publication number: 20100237738
    Abstract: Embodiments disclosed herein generally solve a stiction problem in switching devices by using a series of pulses of force which take the switch from being strongly adhered to a landing electrode to the point where it is only weakly adhered. Once in the low adhesion state, the switch can then be pulled away from contact with a lower force provided by either the spring constant of the switch and/or the electrostatic forces resulting from low voltages applied to nearby electrodes.
    Type: Application
    Filed: March 17, 2009
    Publication date: September 23, 2010
    Inventors: CHARLES GORDON SMITH, RICHARD L. KNIPE
  • Patent number: 7772024
    Abstract: A method of manufacturing a micromechanical element wherein the method comprises the steps of providing a layer of base material, applying at least one at least partly sacrificial layer of an etchable material, patterning the at least partly sacrificial layer, to define at least a portion of the shape of the element, applying at least one structural layer of a mechanical material, patterning the structural layer to form at least a portion of the element, and removing at least partly the patterned at least partly sacrificial layer to release partly free the element. The mechanical material is selected from the group of conductive materials.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: August 10, 2010
    Assignee: Cavendish Kinetics Ltd.
    Inventors: Robert Van Kampen, Charles Gordon Smith, Jack Luo, Andrew John Weeks
  • Publication number: 20100116632
    Abstract: Embodiments disclosed herein generally include using a large number of small MEMS devices to replace the function of an individual larger MEMS device or digital variable capacitor. The large number of smaller MEMS devices perform the same function as the larger device, but because of the smaller size, they can be encapsulated in a cavity using complementary metal oxide semiconductor (CMOS) compatible processes. Signal averaging over a large number of the smaller devices allows the accuracy of the array of smaller devices to be equivalent to the larger device. The process is exemplified by considering the use of a MEMS based accelerometer switch array with an integrated analog to digital conversion of the inertial response. The process is also exemplified by considering the use of a MEMS based device structure where the MEMS devices operate in parallel as a digital variable capacitor.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 13, 2010
    Inventors: CHARLES GORDON SMITH, Richard L. Knipe, Vikram Joshi, Roberto Gaddi, Anartz Unamuno, Robertus Petrus Van Kampen
  • Publication number: 20090298215
    Abstract: A method, in a complementary metal oxide semiconductor fabrication process, of creating a layered housing containing a micro-electromechanical system device, the method comprising the steps of providing a cavity in at least one layer of the housing, the cavity being accessible through via holes in a layer of insulating material deposited thereon, and the layer of insulating material being covered by a thin film layer of conductive material. The method further comprises the step of hydrophobically treating at least a portion of the inner surface of the cavity. Finally the method comprises the steps of submerging the wafer in an electroplating solution and electroplating a conductive layer onto the thin film layer of conductive material such that the cavity remains free of electroplating solution.
    Type: Application
    Filed: November 22, 2006
    Publication date: December 3, 2009
    Inventors: Charles Gordon Smith, Robertus P. Van Kampen
  • Publication number: 20090134522
    Abstract: A method of manufacturing a non-volatile memory bitcell comprises the steps of depositing a first layer of conductive material on a substrate and patterning and etching the first layer of conductive material to form three non-linearly disposed electrodes. The method also comprises the steps of depositing a first layer of sacrificial material on the electrodes and the substrate and providing an elongate cantilever structure on the first layer of sacrificial material such that the cantilever structure and at least a portion of each electrode overlap each other. The method also includes the steps of depositing a second layer of sacrificial material on the cantilever structure and the first layer of sacrificial material and providing a capping layer on the second layer of sacrificial material and providing holes in the capping layer such that at least a portion of the second layer of sacrificial material is exposed.
    Type: Application
    Filed: November 22, 2006
    Publication date: May 28, 2009
    Applicant: CAVENDISH KINETICS LTD.
    Inventors: Charles Gordon Smith, Robert Kazinczi, Robertus P. Van Kampen
  • Patent number: 7063778
    Abstract: An apparatus for driving small volumes of fluid. The apparatus comprises a substrate and a first array of electrically conductive electrodes formed on the substrate. A second array of electrically conductive electrodes formed on the substrate, the first and second array being interlaced and being arranged such that each of the electrodes in the second array has a width in a fluid driving direction which is greater than that of each of the electrodes in the first array and such that the first and second set electrodes are positioned so that each of the electrodes of the first set is not at a position equidistant from adjacent electrodes of the second set, wherein both of the arrays of the arrays of electrode having widths in the fluid flow direction and thickness selected such that, in use, by varying the peak value of an alternating drive voltage applied thereto the direction of flow of a fluid adjacent to the arrays of electrodes can be controlled.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: June 20, 2006
    Assignee: Cambridge University Technical Services, Ltd.
    Inventors: Moeketsi Mpholo, Benjamin Brown, Charles Gordon Smith
  • Publication number: 20040056318
    Abstract: A non-volatile memory device that has an increased density of storage elements formed thereon. A non-volatile memory device includes a substrate supporting an array of field effect transistor devices. A plate is movable with respect to the substrate supporting an array of insulated charge storing elements each having gate-forming metal plates adjacent thereto. There is also means for moving the plate with respect to the substrate such that, in use, the plate can be moved to position different charge storing elements over one of the array of field effect transistors so that each field effect transistor is able to determine the charge stored on more than one element. A corresponding magnetic effect device is also provided.
    Type: Application
    Filed: July 16, 2003
    Publication date: March 25, 2004
    Inventor: Charles Gordon Smith
  • Patent number: 6300149
    Abstract: A method of manufacturing an integrated circuit device from a plurality of physically separate individual electrical elements comprises manufacturing each of the plurality of elements and verifying the operability of each of the elements. Inoperable elements are discarded and he operable elements retained in a fluid. The retained elements are aligned so that each element is adjacent to at least one other element and the arrangement of elements treated to provide connections therebetween and thereby to produce a single integrated circuit device.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: October 9, 2001
    Assignee: Cavendish Kinetics Limited
    Inventor: Charles Gordon Smith
  • Patent number: 5677823
    Abstract: A bi-stable memory element (1) comprises a base contact (3), and a bridging contact (8), both made from an electrically conductive material. The bridging contact (8) is dimensioned so as to have two stable positions, in one of which the bridging contact (8) is in contact with the base contact (3), and in the other of which the bridging contact (8) is spaced apart from the base contact (3). Deflection means (4, 5) deflects the bridging contact (8) from one stable position to the other.
    Type: Grant
    Filed: November 6, 1995
    Date of Patent: October 14, 1997
    Assignee: Cavendish Kinetics Ltd.
    Inventor: Charles Gordon Smith