Patents by Inventor Charles J. Cohen

Charles J. Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961041
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: April 16, 2024
    Assignee: Cybernet Systems Corporation
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe, Charles J. Cohen
  • Patent number: 11920950
    Abstract: An in-vehicle system for generating precise, lane-level road map data includes a GPS receiver operative to acquire positional information associated with a track along a road path. An inertial sensor provides time local measurement of acceleration and turn rate along the track, and a camera acquires image data of the road path along the track. A processor is operative to receive the local measurement from the inertial sensor and image data from the camera over time in conjunction with multiple tracks along the road path, and improve the accuracy of the GPS receiver through curve fitting. One or all of the GPS receiver, inertial sensor and camera are disposed in a smartphone. The road map data may be uploaded to a central data repository for post processing when the vehicle passes through a WiFi cloud to generate the precise road map data, which may include data collected from multiple drivers.
    Type: Grant
    Filed: December 13, 2020
    Date of Patent: March 5, 2024
    Assignee: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Douglas Haanpaa, Charles J. Cohen
  • Publication number: 20230416245
    Abstract: The disclosure provides adenosine analogs for the treatment of disease such as pain and inflammatory conditions.
    Type: Application
    Filed: February 15, 2023
    Publication date: December 28, 2023
    Inventors: Charles J. COHEN, Arthur F. KLUGE, Soumya S. RAY, John H. HUTCHINSON
  • Patent number: 11748700
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: September 5, 2023
    Assignee: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe, Charles J. Cohen
  • Patent number: 11727349
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: August 15, 2023
    Assignee: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe, Charles J. Cohen
  • Patent number: 11703879
    Abstract: Autonomously driven vehicles operate in rain, snow and other adverse weather conditions. An on-board vehicle sensor has a beam with a diameter that is only intermittently blocked by rain, snow, dust or other obscurant particles. This allows an obstacle detection processor is to tell the difference between obstacles, terrain variations and obscurant particles, thereby enabling the vehicle driving control unit to disregard the presence of obscurant particles along the route taken by the vehicle. The sensor may form part of a LADAR or RADAR system or a video camera. The obstacle detection processor may receive time-spaced frames divided into cells or pixels, whereby groups of connected cells or pixels and/or cells or pixels that persist over longer periods of time are interpreted to be obstacles or terrain variations. The system may further including an input for receiving weather-specific configuration parameters to adjust the operation of the obstacle detection processor.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: July 18, 2023
    Assignee: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Douglas Haanpaa, Charles J. Cohen
  • Publication number: 20230219597
    Abstract: An autonomous vehicle (an AV, or manual vehicle in an autonomous or semi-autonomous mode) includes the ability to sense a command from a source external to the vehicle and modify the behavior of the vehicle in accordance with the command. For example, the vehicle may visualize a police officer or other person associated with traffic control and interpret gestures made by the person causing the vehicle to stop, slow down, pull over, change lanes, back up or take a different route due to unplanned traffic patterns such as accidents, harsh weather, road closings or other situations. The system and method may also be used for non-emergency purposes, including external guidance for load pick-up/placement, hailing a vehicle used as a cab, and so forth. The command may further be spoken or may include a radio frequency (RF) light or other energy component.
    Type: Application
    Filed: November 22, 2022
    Publication date: July 13, 2023
    Inventors: Charles J. Cohen, Charles Jacobus, Glenn Beach, George Paul
  • Patent number: 11257479
    Abstract: A system and method has the ability to take information from a wide variety of sources and package it in a form that a user can accesses in a conversationally intuitive manner. Task or knowledge domain-specific knowledge bases acquired from structured and free-text sources, data extracted describing world state, or natural language and spoken language knowledge are used to “intelligently” respond to an operator's or user's verbal or written request for information. In the example of a maintenance system, a user may submit status-related questions, and the system might then verbalize a list of instructions of what further diagnostic information the maintainer should acquire through tests. As the maintainer verbalizes to the system their findings, the system might narrow down its assessment of likely faults and eventually verbalize to the maintainer specific steps, and potentially images and diagrams describing the necessary corrective maintenance. Additional applications are presented in the disclosure.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: February 22, 2022
    Assignee: Cybernet Systems Corp.
    Inventor: Charles J. Cohen
  • Publication number: 20210326800
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Application
    Filed: October 19, 2020
    Publication date: October 21, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe, Charles J. Cohen
  • Publication number: 20210248915
    Abstract: Autonomous and manually operated vehicles are integrated into a cohesive, interactive environment, with communications to each other and to their surroundings, to improve traffic flow while reducing accidents and other incidents. All vehicles send/receive messages to/from each other, and from infrastructure devices, enabling the vehicles to determine their status, traffic conditions and infrastructure. The vehicles store and operate in accordance with a common set of rules based upon the messages received and other inputs from sensors, databases, and so forth, to avoid obstacles and collisions based upon current and, in some cases, future or predicted behavior. Shared vehicle control interfaces enable the AVs to conform to driving activities that are legal, safe, and allowable on roadways. Such activities enable each AV to drive within safety margins, speed limits, on allowed or legal driving lanes and through allowed turns, intersections, mergers, lane changes, stops/starts, and so forth.
    Type: Application
    Filed: November 25, 2020
    Publication date: August 12, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Douglas Haanpaa, Eugene Foulk, Pritpaul Mahal, Steve Rowe, Charles J. Cohen, Glenn J. Beach
  • Publication number: 20210208587
    Abstract: Autonomously driven vehicles operate in rain, snow and other adverse weather conditions. An on-board vehicle sensor has a beam with a diameter that is only intermittently blocked by rain, snow, dustor other obscurant particles. This allows an obstacle detection processor is to tell the difference between obstacles, terrain variations and obscurant particles, thereby enabling the vehicle driving control unit to disregard the presence of obscurant particles along the route taken by the vehicle. The sensor may form part of a LADAR or RADAR system or a video camera. The obstacle detection processor may receive time-spaced frames divided into cells or pixels, whereby groups of connected cells or pixels and/or cells or pixels that persist over longer periods of time are interpreted to be obstacles or terrain variations. The system may further including an input for receiving weather-specific configuration parameters to adjust the operation of the obstacle detection processor.
    Type: Application
    Filed: December 14, 2020
    Publication date: July 8, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Douglas Haanpaa, Charles J. Cohen
  • Publication number: 20210110726
    Abstract: Autonomous and manually operated vehicles are integrated into a cohesive, interactive environment, with communications to each other and to their surroundings, to improve traffic flow while reducing accidents and other incidents. All vehicles send/receive messages to/from each other, and from infrastructure devices, enabling the vehicles to determine their status, traffic conditions and infrastructure. The vehicles store and operate in accordance with a common set of rules based upon the messages received and other inputs from sensors, databases, and so forth, to avoid obstacles and collisions based upon current and, in some cases, future or predicted behavior. Shared vehicle control interfaces enable the AVs to conform to driving activities that are legal, safe, and allowable on roadways. Such activities enable each AV to drive within safety margins, speed limits, on allowed or legal driving lanes and through allowed turns, intersections, mergers, lane changes, stops/starts, and so forth.
    Type: Application
    Filed: November 25, 2020
    Publication date: April 15, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Douglas Haanpaa, Eugene Foulk, Pritpaul Mahal, Steve Rowe, Charles J. Cohen, Glenn J. Beach
  • Publication number: 20210104165
    Abstract: Autonomous and manually operated vehicles are integrated into a cohesive, interactive environment, with communications to each other and to their surroundings, to improve traffic flow while reducing accidents and other incidents. All vehicles send/receive messages to/from each other, and from infrastructure devices, enabling the vehicles to determine their status, traffic conditions and infrastructure. The vehicles store and operate in accordance with a common set of rules based upon the messages received and other inputs from sensors, databases, and so forth, to avoid obstacles and collisions based upon current and, in some cases, future or predicted behavior. Shared vehicle control interfaces enable the AVs to conform to driving activities that are legal, safe, and allowable on roadways. Such activities enable each AV to drive within safety margins, speed limits, on allowed or legal driving lanes and through allowed turns, intersections, mergers, lane changes, stops/starts, and so forth.
    Type: Application
    Filed: November 25, 2020
    Publication date: April 8, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Douglas Haanpaa, Eugene Foulk, Pritpaul Mahal, Steve Rowe, Charles J. Cohen, Glenn J. Beach
  • Publication number: 20210095972
    Abstract: An in-vehicle system for generating precise, lane-level road map data includes a GPS receiver operative to acquire positional information associated with a track along a road path. An inertial sensor provides time local measurement of acceleration and turn rate along the track, and a camera acquires image data of the road path along the track. A processor is operative to receive the local measurement from the inertial sensor and image data from the camera over time in conjunction with multiple tracks along the road path, and improve the accuracy of the GPS receiver through curve fitting. One or all of the GPS receiver, inertial sensor and camera are disposed in a smartphone. The road map data may be uploaded to a central data repository for post processing when the vehicle passes through a WiFi cloud to generate the precise road map data, which may include data collected from multiple drivers.
    Type: Application
    Filed: December 13, 2020
    Publication date: April 1, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Douglas Haanpaa, Charles J. Cohen
  • Publication number: 20210082296
    Abstract: Autonomous and manually operated vehicles are integrated into a cohesive, interactive environment, with communications to each other and to their surroundings, to improve traffic flow while reducing accidents and other incidents. All vehicles send/receive messages to/from each other, and from infrastructure devices, enabling the vehicles to determine their status, traffic conditions and infrastructure. The vehicles store and operate in accordance with a common set of rules based upon the messages received and other inputs from sensors, databases, and so forth, to avoid obstacles and collisions based upon current and, in some cases, future or predicted behavior. Shared vehicle control interfaces enable the AVs to conform to driving activities that are legal, safe, and allowable on roadways. Such activities enable each AV to drive within safety margins, speed limits, on allowed or legal driving lanes and through allowed turns, intersections, mergers, lane changes, stops/starts, and so forth.
    Type: Application
    Filed: November 25, 2020
    Publication date: March 18, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Douglas Haanpaa, Eugene Foulk, Pritpaul Mahal, Steve Rowe, Charles J. Cohen, Glenn J. Beach
  • Publication number: 20210082297
    Abstract: Autonomous and manually operated vehicles are integrated into a cohesive, interactive environment, with communications to each other and to their surroundings, to improve traffic flow while reducing accidents and other incidents. All vehicles send/receive messages to/from each other, and from infrastructure devices, enabling the vehicles to determine their status, traffic conditions and infrastructure. The vehicles store and operate in accordance with a common set of rules based upon the messages received and other inputs from sensors, databases, and so forth, to avoid obstacles and collisions based upon current and, in some cases, future or predicted behavior. Shared vehicle control interfaces enable the AVs to conform to driving activities that are legal, safe, and allowable on roadways. Such activities enable each AV to drive within safety margins, speed limits, on allowed or legal driving lanes and through allowed turns, intersections, mergers, lane changes, stops/starts, and so forth.
    Type: Application
    Filed: November 25, 2020
    Publication date: March 18, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Douglas Haanpaa, Eugene Foulk, Pritpaul Mahal, Steve Rowe, Charles J. Cohen, Glenn J. Beach
  • Publication number: 20210056499
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 25, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe, Charles J. Cohen
  • Publication number: 20210049543
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 18, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe, Charles J. Cohen
  • Publication number: 20210035056
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe, Charles J. Cohen
  • Publication number: 20210035057
    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Applicant: Cybernet Systems Corp.
    Inventors: Charles J. Jacobus, Glenn J. Beach, Steve Rowe, Charles J. Cohen