Patents by Inventor Charles J. Schaeffer
Charles J. Schaeffer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9577266Abstract: A method for producing a negative grid for a battery which includes providing a strip of battery grid material and performing a punching operation on the battery grid material to remove material and form a grid. The punching operation produces a negative battery grid having a plurality of grid wires bounded by a frame. The battery grid includes a top frame member. A first side frame member is coupled to the top frame member at a first end thereof. A second side frame member is coupled to the top frame member at a second end thereof. A bottom frame member is spaced apart from the top frame member and coupled to the first side frame member and the second side frame member. The negative grid does not include exposed wire ends that may puncture a polymeric separator when the negative grid is provided within the separator.Type: GrantFiled: February 29, 2008Date of Patent: February 21, 2017Assignee: Johnson Controls Technology CompanyInventors: Jeffrey L. Troxel, Charles J. Schaeffer, Glenn W. Andersen, Michael E. Lacroix, Wen-Hong Kao
-
Patent number: 8709664Abstract: A grid network for a battery plate is provided. The grid network includes a plurality of spaced apart grid wire elements, each grid wire element having opposed ends joined to one of a plurality of nodes. Each node includes the juncture of one of the opposed ends of a plurality of the grid wire elements to define a plurality of open spaces in the grid network. At least one of the grid wire elements has a first transverse cross-section intermediate its opposed ends that is a different shape than a second transverse cross-section at at least one of the grid wire element's opposed ends.Type: GrantFiled: November 7, 2011Date of Patent: April 29, 2014Assignee: Johnson Controls Technology CompanyInventors: Charles J. Schaeffer, Jeffrey L. Troxel, M. Eric Taylor, Wen-Hong Kao, Christian P. Hansen, Yu-Lin Chen, Dan J. Cantillon, Bart Sauer
-
Patent number: 8252464Abstract: A method of forming battery grids or plates that includes the step of mechanically reshaping or refinishing battery grid wires to improve adhesion between the battery paste and the grid wires. The method is particularly useful in improving the past adhesion to battery grids formed by a continuous batter grid making process (such as strip expansion, strip stamping, continuous casting) that produces grid wires and nodes with smooth surfaces and rectangular cross-section. In a preferred version of the method, the grid wires of battery grids produced by a stamping process are deformed such that the grid wires have a cross-section other than the rectangular cross-section produced by the stamping process. The method increases the cycle life of a battery.Type: GrantFiled: November 7, 2011Date of Patent: August 28, 2012Assignee: Johnson Controls Technology CompanyInventors: Charles J. Schaeffer, Jeffrey L. Troxel, M. Eric Taylor, Wen-Hong Kao, Christian P. Hansen, Yu-Lin Chen, Dan J. Cantillon, Bart Sauer
-
Publication number: 20120064413Abstract: A grid network for a battery plate is provided. The grid network includes a plurality of spaced apart grid wire elements, each grid wire element having opposed ends joined to one of a plurality of nodes. Each node includes the juncture of one of the opposed ends of a plurality of the grid wire elements to define a plurality of open spaces in the grid network. At least one of the grid wire elements has a first transverse cross-section intermediate its opposed ends that is a different shape than a second transverse cross-section at least one of the grid wire element's opposed ends.Type: ApplicationFiled: September 7, 2011Publication date: March 15, 2012Applicant: Johnson Controls Technology CompanyInventors: Charles J. Schaeffer, Jeffrey L. Troxel, M. Eric Taylor, Wen-Hong Kao, Christian P. Hansen, Yu-Lin Chen, Dan J. Cantillon, Bart Sauer
-
Publication number: 20120058394Abstract: A grid network for a battery plate is provided. The grid network includes a plurality of spaced apart grid wire elements, each grid wire element having opposed ends joined to one of a plurality of nodes. Each node includes the juncture of one of the opposed ends of a plurality of the grid wire elements to define a plurality of open spaces in the grid network. At least one of the grid wire elements has a first transverse cross-section intermediate its opposed ends that is a different shape than a second transverse cross-section at at least one of the grid wire element's opposed ends.Type: ApplicationFiled: November 7, 2011Publication date: March 8, 2012Applicant: Johnson Controls Technology CompanyInventors: Charles J. Schaeffer, Jeffrey L. Troxel, M. Eric Taylor, Wen-Hong Kao, Christian P. Hansen, Yu-Lin Chen, Dan J. Cantillon, Bart Sauer
-
Publication number: 20120047719Abstract: A method of forming battery grids or plates that includes the step of mechanically reshaping or refinishing battery grid wires to improve adhesion between the battery paste and the grid wires. The method is particularly useful in improving the past adhesion to battery grids formed by a continuous batter grid making process (such as strip expansion, strip stamping, continuous casting) that produces grid wires and nodes with smooth surfaces and rectangular cross-section. In a preferred version of the method, the grid wires of battery grids produced by a stamping process are deformed such that the grid wires have a cross-section other than the rectangular cross-section produced by the stamping process. The method increases the cycle life of a battery.Type: ApplicationFiled: November 7, 2011Publication date: March 1, 2012Applicant: Johnson Controls Technology CompanyInventors: Charles J. Schaeffer, Jeffrey L. Troxel, M. Eric Taylor, Wen-Hong Kao, Christian P. Hansen, Yu-Lin Chen, Dan J. Cantillon, Bart Sauer
-
Patent number: 8034488Abstract: A grid network for a battery plate is provided. The grid network includes a plurality of spaced apart grid wire elements, each grid wire element having opposed ends joined to one of a plurality of nodes. Each node includes the juncture of one of the opposed ends of a plurality of the grid wire elements to define a plurality of open spaces in the grid network. At least one of the grid wire elements has a first transverse cross-section intermediate its opposed ends that is a different shape than a second transverse cross-section at least one of the grid wire element's opposed ends.Type: GrantFiled: August 12, 2010Date of Patent: October 11, 2011Assignee: Johnson Controls Technology CompanyInventors: Charles J. Schaeffer, Jeffrey L. Troxel, M. Eric Taylor, Wen-Hong Kao, Christian P. Hansen, Yu-Lin Chen, Dan J. Cantillon, Bart Sauer
-
Publication number: 20100304219Abstract: A grid network for a battery plate is provided. The grid network includes a plurality of spaced apart grid wire elements, each grid wire element having opposed ends joined to one of a plurality of nodes. Each node includes the juncture of one of the opposed ends of a plurality of the grid wire elements to define a plurality of open spaces in the grid network. At least one of the grid wire elements has a first transverse cross-section intermediate its opposed ends that is a different shape than a second transverse cross-section at at least one of the grid wire element's opposed ends.Type: ApplicationFiled: August 12, 2010Publication date: December 2, 2010Applicant: Johnson Controls Technology CompanyInventors: Charles J. Schaeffer, Jeffrey L. Troxel, M. Eric Taylor, Wen-Hong Kao, Christian P. Hansen, Yu-Lin Chen, Dan J. Cantillon, Bart Sauer
-
Patent number: 7799463Abstract: A method of forming battery grids or plates that includes the step of mechanically reshaping or refinishing battery grid wires to improve adhesion between the battery paste and the grid wires. The method is particularly useful in improving the paste adhesion to battery grids formed by a continuous battery grid making process (such as strip expansion, strip stamping, continuous casting) that produces grid wires and nodes with smooth surfaces and a rectangular cross-section. In a preferred version of the method, the grid wires of battery grids produced by a stamping process are deformed such that the grid wires have a cross-section other than the rectangular cross-section produced by the stamping process. The method increases the cycle life of a battery.Type: GrantFiled: March 22, 2005Date of Patent: September 21, 2010Assignee: Johnson Controls Technology CompanyInventors: Charles J. Schaeffer, Jeffrey L. Troxel, M. Eric Taylor, Wen-Hong Kao, Christian P. Hansen, Yu-Lin Chen, Dan J. Cantillon, Bart Sauer
-
Publication number: 20100101078Abstract: A method for producing a negative grid for a battery which includes providing a strip of battery grid material and performing a punching operation on the battery grid material to remove material and form a grid. The punching operation produces a negative battery grid having a plurality of grid wires bounded by a frame. The battery grid includes a top frame member. A first side frame member is coupled to the top frame member at a first end thereof. A second side frame member is coupled to the top frame member at a second end thereof. A bottom frame member is spaced apart from the top frame member and coupled to the first side frame member and the second side frame member. The negative grid does not include exposed wire ends that may puncture a polymeric separator when the negative grid is provided within the separator.Type: ApplicationFiled: February 29, 2008Publication date: April 29, 2010Applicant: Johnson Controls Technology CompanyInventors: Jeffrey L. Troxel, Charles J. Schaeffer, Glenn W. Andersen, Michael E. Lacroix, Wen-Hong Kao
-
Patent number: 6921611Abstract: A method of making a battery includes forming a strip of interconnected grids from a grid material by feeding a continuous strip of the grid material along a linear path aligned with the longitudinal direction of the strip and punching grid material out of the strip. Each interconnected grid includes a plurality of wires, with each wire having opposed ends joined to one of a plurality of nodes to define a plurality of open spaces. The method also includes modifying at least one of the wires at a position intermediate the opposed ends of the wire such that a first transverse cross-section taken intermediate the opposed ends of the wire differs from a second transverse cross-section of the wire taken at one of the opposed ends of the wire. The method further includes applying paste to the strip and cutting the strip to form a plurality of plates.Type: GrantFiled: July 2, 2001Date of Patent: July 26, 2005Assignee: Johnson Controls Technology CompanyInventors: Charles J. Schaeffer, Jeffrey L. Troxel, M. Eric Taylor, Wen-Hong Kao, Christian P. Hansen, Yu-Lin Chen, Dan J. Cantillon, Bart Sauer
-
Publication number: 20040187986Abstract: A grid for a battery having a current collection lug and a plurality of wires is made by a method that includes forming the grid utilizing a punching operation. The grid is formed of an alloy including calcium in an amount of about 0.05 percent by weight to about 0.08 percent by weight, tin in an amount of about 1.2 percent by weight to about 1.8 percent by weight, and bismuth in an amount of less than about 0.04 percent by weight. The balance of the alloy comprises lead.Type: ApplicationFiled: April 7, 2004Publication date: September 30, 2004Applicant: Johnson Controls Technology CompanyInventor: Charles J. Schaeffer
-
Publication number: 20040033157Abstract: A lead alloy for a grid for a battery is disclosed. The alloy includes calcium in an amount of about 0.05 percent by weight to about 0.0725 percent by weight, tin in an amount of about 1.2 percent by weight to about 1.8 percent by weight, silver in an amount of greater than about 0.001 percent by weight, and bismuth in an amount of about 0.0005 percent by weight to less than about 0.04 percent by weight. An alloy for a grid for a battery is also disclosed having calcium in an amount of about 0.05 percent by weight to about 0.07 percent by weight, tin in an amount of about 1.2 percent by weight to about 1.5 percent by weight, silver in an amount of greater than about 0.001 percent by weight and bismuth in an amount of greater than about 0.0115 percent by weight.Type: ApplicationFiled: August 13, 2002Publication date: February 19, 2004Applicant: Johnson Controls Technology CompanyInventor: Charles J. Schaeffer
-
Publication number: 20020015891Abstract: A method of forming battery grids or plates that includes the step of mechanically reshaping or refinishing battery grid wires to improve adhesion between the battery paste and the grid wires. The method is particularly useful in improving the paste adhesion to battery grids formed by a continuous battery grid making process (such as strip expansion, strip stamping, continuous casting) that produces grid wires and nodes with smooth surfaces and a rectangular cross-section. In a preferred version of the method, the grid wires of battery grids produced by a stamping process are deformed such that the grid wires have a cross-section other than the rectangular cross-section produced by the stamping process. The method increases the cycle life of a battery.Type: ApplicationFiled: July 2, 2001Publication date: February 7, 2002Applicant: Johnson Controls Technology CompanyInventors: Charles J. Schaeffer, Jeffrey L. Troxel, M. Eric Taylor, Wen-Hong Kao, Christian P. Hansen, Yu-Lin Chen, Dan J. Cantillon, Bart Sauer
-
Publication number: 20020009633Abstract: An alloy for casting terminals for lead-acid batteries which has good corrosion resistance, produces less dross during manufacturing, has resistance to polypropylene degradation, as well as other improved features. The alloy is composed of antimony present in the range of about 2.5-4.75%; arsenic present in the range of about 0.15-0.35%; tin present in the range of about 0.2-0.6%; copper present in the range of about 0-200 ppm; sulfur present in the range of about 0-40 ppm and the balance lead. In an alternative embodiment, copper and sulfur are replaced with selenium in the range of about 40-90 ppm.Type: ApplicationFiled: July 2, 2001Publication date: January 24, 2002Applicant: JOHNSON CONTROLS TECHNOLOGY COMPANYInventors: Christian P. Hansen, Lena N. Klebanov, David A. Wynn, Glenn M. Trischan, Charles J. Schaeffer
-
Publication number: 20010031394Abstract: An alloy for casting terminals for lead-acid batteries which has good corrosion resistance, produces less dross during manufacturing, has resistance to polypropylene degradation, as well as other improved features. The alloy is composed of antimony present in the range of about 2.5-4.75%; arsenic present in the range of about 0.15-0.35%; tin present in the range of about 0.2-0.6%; copper present in the range of about 0- 200 ppm; sulfur present in the range of about 0-40 ppm and the balance lead. In an alternative embodiment, copper and sulfur are replaced with selenium in the range of about 40-90 ppm.Type: ApplicationFiled: October 30, 1998Publication date: October 18, 2001Inventors: CHRISTIAN P. HANSEN, LENA N. KLEBANOV, DAVID A. WYNN, GLENN M. TRISCHAN, CHARLES J. SCHAEFFER
-
Patent number: 6300007Abstract: An alloy for casting terminals for lead-acid batteries which has good corrosion resistance, produces less dross during manufacturing, has resistance to polypropylene degradation, as well as other improved features. The alloy is composed of antimony present in the range of about 2.5-4.75%; arsenic present in the range of about 0.15-0.35%; tin present in the range of about 0.23-0.6%; copper present in the range of about 0-200 ppm; sulfur present in the range of about 0-40 ppm and the balance lead. In an alternative embodiment, copper and sulfur are replaced with selenium in the range of about 40-90 ppm.Type: GrantFiled: October 30, 1998Date of Patent: October 9, 2001Assignee: Johnson Controls Technology CompanyInventors: Lena N. Klebanov, Christian P. Hansen, David A. Wynn, Glenn M. Trischan, Charles J. Schaeffer
-
Patent number: 6274274Abstract: A method of forming battery grids or plates that includes the step of mechanically reshaping or refinishing battery grid wires to improve adhesion between the battery paste and the grid wires. The method is particularly useful in improving the paste adhesion to battery grids formed by a continuous battery grid making process (such as strip expansion, strip stamping, continuous casting) that produces grid wires and nodes with smooth surfaces and a rectangular cross-section. In a preferred version of the method, the grid wires of battery grids produced by a stamping process are deformed such that the grid wires have a cross-section other than the rectangular cross-section produced by the stamping process. The method increases the cycle life of a battery.Type: GrantFiled: July 9, 1999Date of Patent: August 14, 2001Assignee: Johnson Controls Technology CompanyInventors: Charles J. Schaeffer, Jeffrey L. Troxel, M. Eric Taylor, Wen-Hong Kao, Christian P. Hansen, Yu-Lin Chen, Dan J. Cantillon, Bart Sauer