Patents by Inventor Charles Joyner

Charles Joyner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060140574
    Abstract: Cleaved grooves, also referred to herein as “cleave streets”, are formed exclusively in a wafer passivation layer overlaying a wafer to provide for correctly aligned and sharp cleaves prior to singulation of the wafer into separate die or chips.
    Type: Application
    Filed: February 27, 2006
    Publication date: June 29, 2006
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Radhakrishnan Nagarajan, Frank Peters, Mehradad Ziari, Fred Kish
  • Publication number: 20060138433
    Abstract: A photonic integrated circuit that includes a plurality of active and passive components on a substrate where one of the components is an optical combiner/decombiner having at least one free space coupler region and a plurality of longitudinal ridge waveguides each extending in the circuit from a first region of the waveguide and coupled at a second region of the waveguide at the free space coupler region. A first dielectric layer formed over the ridge waveguides and the free space coupler region. The first dielectric layer monotonically increases in cross-sectional thickness from the waveguide first region to the second region to reduce signal insertion losses in transitioning from the ridge waveguides to the free space coupler region. The first dielectric layer may be covered with a second passivation layer. The first dielectric layer may be SiOx, SiNx or SixONy and the second passivation layer may be BCB, ZnS or ZnSe.
    Type: Application
    Filed: February 21, 2006
    Publication date: June 29, 2006
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Radhakrishnan Nagarajan, Fred Kish
  • Publication number: 20060133717
    Abstract: Disclosed is a method of adjusting a center channel wavelength of a group of channel wavelengths from of a plurality of modulated sources, integrated in a photonic integrated circuit (PIC), relative to the center of a wavelength passband of an optical combiner, such as an arrayed waveguide array (AWG), also integrated in the photonic integrated circuit (PIC) and optically coupled to outputs from the modulated sources.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 22, 2006
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Radhakrishnan Nagarajan, Fred Kish
  • Publication number: 20060067619
    Abstract: An optical transport network comprises a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip and a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip.
    Type: Application
    Filed: November 15, 2005
    Publication date: March 30, 2006
    Applicant: Infinera Corporation
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Publication number: 20060062519
    Abstract: An optical transmitter comprises a monolithic transmitter photonic integrated circuit (TxPIC) chip that includes an array of modulated sources formed on the PIC chip and having different operating wavelengths approximating a standardized wavelength grid and providing signal outputs of different wavelengths. A wavelength selective combiner is formed on the PIC chip having a wavelength grid passband response approximating the wavelength grid of the standardized wavelength grid. The signal outputs of the modulated sources optically coupled to inputs of the wavelength selective combiner to produce a combined signal output from the combiner. A first wavelength tuning element coupled to each of the modulated sources and a second wavelength tuning element coupled to the wavelength selective combiner. A wavelength monitoring unit is coupled to the wavelength selective combiner to sample the combined signal output.
    Type: Application
    Filed: November 14, 2005
    Publication date: March 23, 2006
    Applicant: Infinera Corporation
    Inventors: Fred Kish, Charles Joyner, David Welch, Robert Taylor, Alan Nilsson
  • Publication number: 20060029324
    Abstract: An InP-based photonic integrated circuit (PIC) includes an optical passive element in the circuit with no bias current applied to such an element. A passivation cladding layer overlies a surface of the optical passive element where the passivation layer comprises benzocyclobutene polymer or BCB.
    Type: Application
    Filed: October 3, 2005
    Publication date: February 9, 2006
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Radhakrishnan Nagarajan, Fred Kish
  • Publication number: 20060023992
    Abstract: A method of in-wafer testing is provided for a monolithic photonic integrated circuit (PIC) formed in a semiconductor wafer where each such in-wafer circuit comprises two or more integrated electro-optic components, one of each in tandem forming a signal channel in the circuit. The method includes the provision of a first integrated photodetector at a rear end of each signal channel and a second integrated photodetector at forward end of each signal channel. Then, the testing is accomplished, first, by sequentially operating a first of a selected channel electro-optic component in a selected circuit to monitor light output from a channel via its first corresponding channel photodetector and adjusting its operating characteristics by detecting that channel electro-optic component output via its second corresponding channel photodetector to provide first calibration data.
    Type: Application
    Filed: October 3, 2005
    Publication date: February 2, 2006
    Applicant: Infinera Corporation
    Inventors: Fred Kish, Charles Joyner, Mark Missey, Frank Peters, Radhakrishnan Nagarajan, Richard Schneider
  • Publication number: 20050286909
    Abstract: An optical transmitter comprises a monolithic transmitter photonic integrated circuit (TxPIC) chip that includes an array of modulated sources formed on the PIC chip and having different operating wavelengths approximating a standardized wavelength grid and providing signal outputs of different wavelengths. A wavelength selective combiner is formed on the PIC chip having a wavelength grid passband response approximating the wavelength grid of the standardized wavelength grid. The signal outputs of the modulated sources optically coupled to inputs of the wavelength selective combiner to produce a combined signal output from the combiner. A first wavelength tuning element coupled to each of the modulated sources and a second wavelength tuning element coupled to the wavelength selective combiner. A wavelength monitoring unit is coupled to the wavelength selective combiner to sample the combined signal output.
    Type: Application
    Filed: August 17, 2005
    Publication date: December 29, 2005
    Applicant: Infinera Corporation
    Inventors: Fred Kish, Charles Joyner, David Welch, Robert Taylor, Alan Nilsson
  • Publication number: 20050213883
    Abstract: A method is disclosed for optimizing optical channel signal demultiplexing in a monolithic receiver photonic integrated circuit (RXPIC) chip by providing an integrated channel signal demultiplexing with multiple waveguide input verniers provided to an WDM signal demultiplexer. The RxPIC chip may optionally include an integrated amplifier in at least some of the waveguide input verniers. The RxPIC chip may be comprised of, in monolithic form, a plurality of optional semiconductor optical amplifiers (SOAs) at the input of the chip to receive a WDM signal from an optical link which is provided along a plurality of waveguide input verniers to an integrated optical demultiplexer, such as, but not limited to, an arrayed waveguide grating (AWG), as a WDM signal demultiplexer. Thus, optical outputs from the respective semiconductor laser amplifiers are provided as vernier inputs to the optical demultiplexer forming a plurality of input verniers at the input to the optical demultiplexer.
    Type: Application
    Filed: May 24, 2005
    Publication date: September 29, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner
  • Publication number: 20050207696
    Abstract: An optical-to-electrical-to-optical converter comprises a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip comprising an optical waveguide formed in the chip from a chip input to receive a first multiplexed channel signal from an optical link and provide them to an arrayed waveguide grating (AWG) which demultiplexes the multiplexed channel signals and provides a plurality of electrical channel signals to an electronic regenerator. The regenerator regenerates the electrical channel signals to an original signal waveform and provides the reformed electrical signals to a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip having an array of modulated sources formed in the chip that are coupled as inputs to an arrayed waveguide grating (AWG). The TxPIC modulates the reformed electrical signals to form a plurality of optical channel sign which are combined to form a second first multiplexed channel signal for transmission on an optical link.
    Type: Application
    Filed: May 5, 2005
    Publication date: September 22, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Publication number: 20050201669
    Abstract: An optical transport network comprises a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip and a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip.
    Type: Application
    Filed: May 5, 2005
    Publication date: September 15, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Publication number: 20050151144
    Abstract: In photonic integrated circuits (PICs) having at least one active semiconductor device, such as, a buried heterostructure semiconductor laser, LED, modulator, photodiode, heterojunction bipolar transistor, field effect transistor or other active device, a plurality of semiconductor layers are formed on a substrate with one of the layers being an active region. A current channel is formed through this active region defined by current blocking layers formed on adjacent sides of a designated active region channel where the blocking layers substantially confine the current through the channel. The blocking layers are characterized by being an aluminum-containing Group Ill-V compound, i.e., an Al-III-V layer, intentionally doped with oxygen from an oxide source. Also, wet oxide process or a deposited oxide source may be used to laterally form a native oxide of the Al-III-V layer.
    Type: Application
    Filed: February 16, 2005
    Publication date: July 14, 2005
    Applicant: Infinera Corporation
    Inventors: Fred Kish, Sheila Hurtt, Charles Joyner, Richard Schneider
  • Publication number: 20050145863
    Abstract: In photonic integrated circuits (PICs) having at least one active semiconductor device, such as, a buried heterostructure semiconductor laser, LED, modulator, photodiode, heterojunction bipolar transistor, field effect transistor or other active device, a plurality of semiconductor layers are formed on a substrate with one of the layers being an active region. A current channel is formed through this active region defined by current blocking layers formed on adjacent sides of a designated active region channel where the blocking layers substantially confine the current through the channel. The blocking layers are characterized by being an aluminum-containing Group III-V compound, i.e., an Al-III-V layer, intentionally doped with oxygen from an oxide source. Also, wet oxide process or a deposited oxide source may be used to laterally form a native oxide of the Al-III-V layer.
    Type: Application
    Filed: February 16, 2005
    Publication date: July 7, 2005
    Applicant: Infinera Corporation
    Inventors: Fred Kish, Sheila Hurtt, Charles Joyner, Richard Schneider
  • Publication number: 20050135729
    Abstract: An optical receiver photonic integrated circuit (RxPIC) comprises a semiconductor monolithic chip having an input to receive from an optical transmission link a combined channel signal originating from an optical transmitter source and comprising a plurality of channel signals having different wavelengths forming a wavelength grid. An optical decombiner is integrated in the chip and optically coupled to the input to receive the multiplexed channel signal and provide a decombined individual channel signal on an output waveguide of a plurality of such output waveguides provided from the optical decombiner. A plurality of photodetectors are also integrated in the chip and each photodetector is optically coupled to one of the output waveguides to receive a decombined channel signal and convert the channel signal to an electrical signal.
    Type: Application
    Filed: January 6, 2005
    Publication date: June 23, 2005
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Publication number: 20050135730
    Abstract: A method is disclosed for monitoring and controlling the bit error rate (BER) in an optical communication network where an optical receiver in the optical transmission network is a monolithic photonic integrated circuit (RxPIC) chip. The method includes the steps of decombining on-chip a combined channel signal received from the network and then monitoring a real time bit error rate (BER) of a decombined channel signal. The determined BER is then communicated, such as through an optical service channel (OSC) to an optical transmitter source that is the source of origin of the channel signal. Based upon the determined BER, the chirp of a channel signal modulator at the optical transmitter source that generated the monitored channel signal is adjusted by, for example, adjusting its bias. The same channel signal received at the RxPIC chip can be monitored again to determine if an acceptable level for the BER has been achieved by the previous chirp adjustment.
    Type: Application
    Filed: January 7, 2005
    Publication date: June 23, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Publication number: 20050117834
    Abstract: A photonic integrated circuit (PIC) comprises a plurality of integrated optically coupled components formed in a surface of the PIC and a passivating layer overlies at least a portion of the PIC surface. The overlying passivating layer comprises a material selected from the group consisting of BCB, ZnS and ZnSe. Also, when the circuits are PIC chips are die in the semiconductor wafer, a plurality of linear cleave streets are formed in a wafer passivation layer where a pattern of the cleave streets define separate PIC chips in the wafer for their subsequent singulation from the wafer.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 2, 2005
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Radhakrishnan Nagarajan, Fred Kish
  • Publication number: 20050111848
    Abstract: An optical equalizer/dispersion compensator (E/CDC) comprises an input/output for receiving a multiplexed channel signal comprising a plurality of channel signals of different wavelengths. An optical amplifier may be coupled to receive, as an input/output, the multiplexed channel signals which amplifier may be a semiconductor optical amplifier (SOA) or a gain clamped-semiconductor optical amplifier (GC-SOA). A variable optical attenuator (VOA) is coupled to the optical amplifier and a chromatic dispersion compensator (CDC) is coupled to the variable optical attenuator.
    Type: Application
    Filed: October 22, 2004
    Publication date: May 26, 2005
    Applicant: Infinera Coporation
    Inventors: Stephen Grubb, Charles Joyner, Frank Peters, Fred Kish, Drew Perkins
  • Publication number: 20050111780
    Abstract: A method for reducing insertion loss in a transition region between a plurality of input or output waveguides to a free space coupler region in a photonic integrated circuit (PIC) includes the steps of forming a passivation layer over the waveguides and region and forming the passivation overlayer such that it monotonically increases in thickness through the transition region to the free space coupler region.
    Type: Application
    Filed: December 21, 2004
    Publication date: May 26, 2005
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Radhakrishnan Nagarajan, Fred Kish
  • Publication number: 20050111779
    Abstract: Disclosed is a method of in-wafer testing of integrated optical components and in-wafer chips with photonic integrated circuits (PICs).
    Type: Application
    Filed: December 16, 2004
    Publication date: May 26, 2005
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Radhakrishnan Nagarajan, Frank Peters, Mehrdad Ziari, Fred Kish
  • Publication number: 20050105843
    Abstract: Disclosed is a method of in-wafer testing of integrated optical components and in-wafer chips with photonic integrated circuits (PICs).
    Type: Application
    Filed: December 16, 2004
    Publication date: May 19, 2005
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Frank Peters