Patents by Inventor Charles L. Goldsmith

Charles L. Goldsmith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8963659
    Abstract: The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: February 24, 2015
    Inventors: Charles L. Goldsmith, Orlando H. Auciello, Anirudha V. Sumant, Derrick C. Mancini, Chris Gudeman, Suresh Sampath, John A. Carlilse, Robert W. Carpick, James Hwang
  • Patent number: 8525185
    Abstract: A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a “fast discharge diamond dielectric layer” and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: September 3, 2013
    Assignee: UChicago Argonne, LLC
    Inventors: Charles L. Goldsmith, Orlando H. Auciello, John A. Carlisle, Suresh Sampath, Anirudha V. Sumant, Robert W. Carpick, James Hwang, Derrick C. Mancini, Chris Gudeman
  • Publication number: 20120193685
    Abstract: A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a “fast discharge diamond dielectric layer” and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.
    Type: Application
    Filed: April 7, 2011
    Publication date: August 2, 2012
    Applicant: UChicago Argonne, LLC
    Inventors: Charles L. Goldsmith, Orlando H. Auciello, John A. Carlisle, Suresh Sampath, Anirudha V. Sumant, Robert W. Carpick, James Hwang, Derrick C. Mancini, Chris Gudeman
  • Patent number: 7456711
    Abstract: An apparatus and a method are provided for electronically tuning cavity filters. A tunable cavity comprises at least two pieces of material, such as metal plates or metal traces, and MEMS circuitry interconnecting the pieces of material. Multiple tunable cavities can be combined to create a tunable cavity filter. In one embodiment, a waveguide cavity filter comprises a metal insert attached to a substrate. At least two pieces of material and MEMS circuitry reside within the cavities produced by the metal insert. The MEMS circuitry can be controlled to connect or disconnect the pieces of material, which alters the electric and magnetic fields inside the cavities. In another embodiment, a MEMS positioner inside the cavity filter can physically deform or move a piece of material within the cavity. By altering the electric and magnetic fields within the cavities the resonant frequency of the cavity filter can be tuned.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: November 25, 2008
    Assignee: Memtronics Corporation
    Inventor: Charles L. Goldsmith
  • Patent number: 7096568
    Abstract: A new process and structure for microcomponent interconnection utilizing a post-assembly activated junction compound. In one embodiment, first and second microcomponents having respective first and second contact areas are provided. A junction compound is formed on one of the first and second contact areas, and the first and second contact areas are positioned adjacent each other on opposing sides of the junction compound. The junction compound is then activated to couple the first and second microcomponents.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: August 29, 2006
    Assignee: Zyvex Corporation
    Inventors: Erik Nilsen, Matthew D. Ellis, Charles L. Goldsmith, Jeong Bong Lee, Xiaojun Huang, Arun Kumar Nallani, Kabseog Kim, George D. Skidmore
  • Patent number: 6700172
    Abstract: A switch includes a conductive region, a membrane, and a dielectric region. The dielectric region is formed from a dielectric material and is disposed between the membrane and the conductive region. When a sufficient voltage is applied between the conductive region and the membrane, a capacitive coupling between the membrane and the conductive region is effected. The dielectric material has a resistivity sufficiently low to inhibit charge accumulation in the dielectric region during operation of the switch.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: March 2, 2004
    Assignee: Raytheon Company
    Inventors: John C. Ehmke, Charles L. Goldsmith, Zhimin J. Yao, Susan M. Eshelman
  • Patent number: 6633079
    Abstract: RF MicroElectroMechanical Systems (MEMS) circuitry (15) on a first high resistivity substrate (17) is combined with circuitry (11) on a second low resistivity substrate (13) by overlapping the first high resistivity substrate (17) and MEMS circuitry (15) with the low resistivity substrate (13) and circuitry (11) with the MEMS circuitry (15) facing the second circuitry (11). A dielectric lid (19) is placed over the MEMS circuitry (15) and between the first substrate (17) and second substrate (13) with an inert gas in a gap (21) over the MEMS circuitry (15). Interconnecting conductors (25,31,35,37,39,41) extend perpendicular and through the high resistivity substrate (17) and through the dielectric lid (19) to make electrical connection with the low resistivity substrate (13).
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: October 14, 2003
    Assignee: Raytheon Company
    Inventors: James L. Cheever, Charles L. Goldsmith, John C. Ehmke, Billy D. Ables
  • Patent number: 6608268
    Abstract: A proximity micro-electro-mechanical system (MEMS) utilizing a gaseous capacitive gap between two conductive members. The gaseous gap is maintained by insulating structures that prevent the two conductive members from shorting. Once actuated, the gaseous gap allows high-frequency signals to be transmitted between the two conductive members.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: August 19, 2003
    Assignee: MEMtronics, a division of Cogent Solutions, Inc.
    Inventor: Charles L. Goldsmith
  • Publication number: 20030146079
    Abstract: A proximity micro-electro-mechanical system (MEMS) utilizing a gaseous capacitive gap between two conductive members. The gaseous gap is maintained by insulating structures that prevent the two conductive members from shorting. Once actuated, the gaseous gap allows high-frequency signals to be transmitted between the two conductive members.
    Type: Application
    Filed: February 5, 2002
    Publication date: August 7, 2003
    Inventor: Charles L. Goldsmith
  • Patent number: 6559530
    Abstract: A method of integrating MEMS devices with non-MEMS circuitry requires fabricating non-MEMS devices on a substrate in a conventional fashion. A thick dielectric layer is deposited on the completed devices, and the MEMS devices fabricated on the dielectric layer. Vias through the dielectric layer interconnect the MEMS devices to the non-MEMS electronics. The interposed dielectric layer allows the common substrate to have characteristics that best suit the non-MEMS components, without degrading the MEMS performance. Another approach involves bonding together two separate wafers—one for the MEMS devices and one for non-MEMS electronics. A package lid, having filled vias formed therethrough, is bonded to the MEMS wafer, sealing the MEMS devices within. The non-MEMS wafer is mounted to the lid, with the vias effecting the necessary interconnections between the two wafers.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: May 6, 2003
    Assignee: Raytheon Company
    Inventors: David H. Hinzel, Charles L. Goldsmith, Lloyd F. Linder
  • Publication number: 20030054584
    Abstract: A method of integrating MEMS devices with non-MEMS circuitry requires fabricating non-MEMS devices on a substrate in a conventional fashion. A thick dielectric layer is deposited on the completed devices, and the MEMS devices fabricated on the dielectric layer. Vias through the dielectric layer interconnect the MEMS devices to the non-MEMS electronics. The interposed dielectric layer allows the common substrate to have characteristics that best suit the non-MEMS components, without degrading the MEMS performance. Another approach involves bonding together two separate wafers—one for the MEMS devices and one for non-MEMS electronics. A package lid, having filled vias formed therethrough, is bonded to the MEMS wafer, sealing the MEMS devices within. The non-MEMS wafer is mounted to the lid, with the vias effecting the necessary interconnections between the two wafers.
    Type: Application
    Filed: September 19, 2001
    Publication date: March 20, 2003
    Inventors: David H. Hinzel, Charles L. Goldsmith, Lloyd F. Linder
  • Publication number: 20030047799
    Abstract: RF MicroElectroMechanical Systems (MEMS) circuitry (15) on a first high resistivity substrate (17) is combined with circuitry (11) on a second low resistivity substrate (13) by overlapping the first high resistivity substrate (17) and MEMS circuitry (15) with the low resistivity substrate (13) and circuitry (11) with the MEMS circuitry (15) facing the second circuitry (11). A dielectric lid (19) is placed over the MEMS circuitry (15) and between the first substrate (17) and second substrate (13) with an inert gas in a gap (21) over the MEMS circuitry (15). Interconnecting conductors (25, 31, 35, 37, 39, 41) extend perpendicular and through the high resistivity substrate (17) and through the dielectric lid (19) to make electrical connection with the low resistivity substrate (13).
    Type: Application
    Filed: September 10, 2002
    Publication date: March 13, 2003
    Applicant: Raytheon Company
    Inventors: James L. Cheever, Charles L. Goldsmith, John C. Ehmke, Billy D. Ables
  • Patent number: 6512300
    Abstract: RF MicroElectroMechanical Systems (MEMs) circuitry(15) on a first high resistivity substrate (17)is combined with circuitry (11) onsecond low-resisitivity substrate (13) by overlapping the first high resisitivity substrate (17)and MEMs circuitry (15) with the low resisitivity substrate(13) and circuitry (11) with the MEMs circuitry (15)facing the second circuitry (11). A dielectric lid (19) is placed over the MEMs circuitry (15)and between the first substrate (17)and second substrate (13)with an inert gas in a gap (21)over the MEMs circuitry (15). Interconnecting conductors (25,31,35,37,39,41) extend perpendicular and through the high resistivity substrate (17)and through the dielectric lid (19) to make electrical connection with the low resisitivity substrate (13).
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: January 28, 2003
    Assignee: Raytheon Company
    Inventors: James L. Cheever, Charles L. Goldsmith, John C. Ehmke, Billy D. Ables
  • Publication number: 20030001251
    Abstract: RF MicroElectroMechanical Systems (MEMs) circuitry(15) on a first high resistivity substrate (17)is combined with circuitry (11) onsecond low-resisitivity substrate (13) by overlapping the first high resisitivity substrate (17)and MEMs circuitry (15) with the low resisitivity substrate(13) and circuitry (11) with the MEMs circuitry (15)facing the second circuitry (11). A dielectric lid (19) is placed over the MEMs circuitry (15)and between the first substrate (17)and second substrate (13)with an inert gas in a gap (21)over the MEMs circuitry (15). Interconnecting conductors (25,31,35,37,39,41) extend perpendicular and through the high resistivity substrate (17)and through the dielectric lid (19) to make electrical connection with the low resisitivity substrate (13).
    Type: Application
    Filed: January 10, 2001
    Publication date: January 2, 2003
    Inventors: James L. Cheever, Charles L. Goldsmith, John C. Ehmke, Billy D. Ables
  • Patent number: 6391675
    Abstract: A switch includes a conductive region, a membrane, and a dielectric region. The dielectric region is formed from a dielectric material and is disposed between the membrane and the conductive region. When a sufficient voltage is applied between the conductive region and the membrane, a capacitive coupling between the membrane and the conductive region is effected. The dielectric material has a resistivity sufficiently low to inhibit charge accumulation in the dielectric region during operation of the switch.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: May 21, 2002
    Assignee: Raytheon Company
    Inventors: John C. Ehmke, Charles L. Goldsmith, Zhimin J. Yao, Susan M. Eshelman
  • Publication number: 20020036304
    Abstract: A switch includes a conductive region, a membrane, and a dielectric region. The dielectric region is formed from a dielectric material and is disposed between the membrane and the conductive region. When a sufficient voltage is applied between the conductive region and the membrane, a capacitive coupling between the membrane and the conductive region is effected. The dielectric material has a resistivity sufficiently low to inhibit charge accumulation in the dielectric region during operation of the switch.
    Type: Application
    Filed: December 4, 2001
    Publication date: March 28, 2002
    Applicant: Raytheon Company, a Delaware corporation
    Inventors: John C. Ehmke, Charles L. Goldsmith, Zhimin J. Yao, Susan M. Eshelman
  • Patent number: 6147582
    Abstract: A method of forming a three-dimensional micro-coil on a substrate (10) is provided which consists of forming a first metal layer (14) on the substrate (10). The first metal layer (14) is partitioned into a first plurality of metal strips (16). A sacrificial layer (18) is formed on the first plurality of metal strips (16). A second metal layer (24) is formed on the sacrificial layer (18). The second metal layer (24) is then partitioned into a second plurality of metal strips (26) such that a continuous loop of metal is formed between the first plurality of metal strips (16) and the second plurality of metal strips (26). This continuous loop of metal defines windings for a three-dimensional micro-coil (28) with one side in contact with the substrate (10).
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: November 14, 2000
    Assignee: Raytheon Company
    Inventors: Charles L. Goldsmith, Andrew Malczewski, John C. Ehmke, Zhimin Yao
  • Patent number: 5479539
    Abstract: An optical-electrical transmitter/receiver (300) with an optical detector (310) for reception which may be made transparent for optical transmission. This permits transmission (320, 330) and reception (310) devices to be positioned in series on a single integrated circuit.
    Type: Grant
    Filed: June 15, 1994
    Date of Patent: December 26, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Charles L. Goldsmith, Bradley M. Kanack