Patents by Inventor Charles L. Kibby

Charles L. Kibby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8519011
    Abstract: Disclosed is a process for converting synthesis gas to liquid hydrocarbon mixtures useful in the production of fuels and petrochemicals. The synthesis gas is contacted with at least two layers of synthesis gas conversion catalyst wherein each synthesis gas conversion catalyst layer is followed by a layer of hydrocracking catalyst and hydroisomerization catalyst or separate layers of hydrocracking and hydroisomerization catalysts. The process can occur within a single reactor, at an essentially common reactor temperature and an essentially common reactor pressure. The process provides a high yield of naphtha range liquid hydrocarbons and a low yield of wax.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: August 27, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Robert J. Saxton, Charles L. Kibby, Kandaswamy Jothimurugesan, Tapan Das
  • Patent number: 8513315
    Abstract: A process of form hydrocarbons boiling to the gasoline range and reducing or eliminating net CO2 production during isosynthesis over a ZnO—Cr2O3 plus ZSM-5 catalyst by adding from about 5% to about 15% CO2 to the synthesis gas mixture prior to contact to with catalyst.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 20, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Charles L. Kibby
  • Patent number: 8481601
    Abstract: The disclosure relates to a method of performing a synthesis gas conversion reaction in which synthesis gas contacts a catalyst system including a mixture of ruthenium loaded Fischer-Tropsch catalyst particles and at least one set of catalyst particles including an acidic component promoted with a noble metal, e.g., Pt or Pd. The reaction occurs at conditions resulting in a hydrocarbons product containing 1-15 weight % CH4, 1-15 weight % C2-C4, 70-95 weight % C5+, 0-5 weight % C21+ normal paraffins, and 0-10 weight % aromatic hydrocarbons.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: July 9, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Tapan Das, Kandaswamy Jothimurugesan, Charles L Kibby, Robert J. Saxton
  • Patent number: 8461220
    Abstract: A method is provided for converting synthesis gas to liquid hydrocarbon mixtures useful as distillate fuel and/or lube base oil containing no greater than about 25 wt % olefins and containing no greater than about 5 wt % C21+ normal paraffins. The synthesis gas is contacted with a synthesis gas conversion catalyst comprising a Fischer-Tropsch synthesis component and an acidic component in an upstream catalyst bed thereby producing a wax-free liquid containing a paraffin component and an olefin component. The olefin component is saturated by contacting the liquid with an olefin saturation catalyst in a downstream catalyst bed.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: June 11, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Robert J. Saxton, Kandaswamy Jothimurugesan, Tapan K. Das
  • Patent number: 8445550
    Abstract: Disclosed is a method of forming a hybrid Fischer-Tropsch catalyst extrudate for use in synthesis gas conversion reactions. The method includes extruding a mixture of ruthenium loaded metal oxide support particles, particles of an acidic component and a binder sol to form an extrudate. The resulting extrudate contains from about 0.1 to about 15 weight percent ruthenium based on the weight of the extrudate. In a synthesis gas conversion reaction, the extrudate is contacted with a synthesis gas having a H2 to CO molar ratio of 0.5 to 3.0 at a reaction temperature of 160° C. to 300° C., a total pressure of 3 to 35 atmospheres, and an hourly space velocity of 5 to 10,000 v/v/hour, resulting in hydrocarbon products containing 1-15 weight % CH4; 1-15 weight % C2-C4; 70-95 weight % C5+; 0-5 weight % C21+ normal paraffins; and 0-10 weight % aromatic hydrocarbons.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: May 21, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kandaswamy Jothimurugesan, Tapan Das, Charles L. Kibby, Robert J. Saxton
  • Publication number: 20130109768
    Abstract: Processes and systems are provided for converting synthesis gas containing a mixture of H2 and CO to liquid hydrocarbon products having a cloud point less than about 15° C. The systems utilize at least one Fischer-Tropsch reactor containing hybrid Fischer-Tropsch catalyst with cooling and separation of reactor effluent following each reactor. The low cloud point indicates that the amount of wax in the hydrocarbon products is minimized relative to conventional Fischer-Tropsch conversion. Accordingly, more economical systems can be built and operated because equipment associated with wax removal or wax treatment can be reduced or eliminated.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventors: Robert J. Saxton, Gordon R. Deppe, Scott Oliver, David W. Parham, Kandaswamy Jothimurugesan, Charles L. Kibby, Tapan K. Das, Christine M. Philips, Richard Sasson, Anne Helgeson
  • Patent number: 8377996
    Abstract: A method for forming a catalyst for synthesis gas conversion comprises impregnating a zeolite extrudate using a solution, for example, a substantially non-aqueous solution, comprising a cobalt salt to provide an impregnated zeolite extrudate and activating the impregnated zeolite extrudate by a reduction-oxidation-reduction cycle.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: February 19, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Kandaswamy Jothimurugesan
  • Publication number: 20130001128
    Abstract: A method is provided for converting synthesis gas to liquid hydrocarbon mixtures useful as distillate fuel and/or lube base oil. The synthesis gas is contacted with a synthesis gas conversion catalyst comprising a Fischer-Tropsch synthesis component in an upstream catalyst bed thereby producing an intermediate hydrocarbon mixture containing olefins and C21+ normal paraffins. The intermediate hydrocarbon mixture is subsequently contacted with a hydroisomerization catalyst and an olefin saturation catalyst, thereby resulting in a product containing no greater than about 25 wt % olefins and containing no greater than about 5 wt % C21+ normal paraffins. The hydroisomerization and olefin saturation catalysts may be in separate beds or mixed in a single bed downstream of the synthesis gas conversion catalyst.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicant: Chevron U.S.A.
    Inventors: Charles L. Kibby, Robert J. Saxton, Kandaswamy Jothimurugesan, Tapan K. Das
  • Patent number: 8263523
    Abstract: A method for forming a cobalt-containing Fischer-Tropsch catalyst involves precipitating a cobalt oxy-hydroxycarbonate species by turbulent mixing, during which a basic solution collides with an acidic solution comprising cobalt. The method further involves depositing the cobalt oxy-hydroxycarbonate species onto an acidic support to provide a catalyst comprising cobalt and the acidic support. The acidic support comprises a zeolite, a molecular sieve, or combinations thereof.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: September 11, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Alfred Haas
  • Patent number: 8258195
    Abstract: A method is disclosed for converting syngas to Fischer-Tropsch (F-T) hydrocarbon products. A synthesis gas including carbon monoxide and hydrogen gas is provided to a F-T reactor. Also, acetylene is supplied to the F-T reactor. The ratio of the volume of acetylene to the volume of synthesis gas is at least 0.01. The synthesis gas and acetylene are reacted under suitable reaction conditions and in the presence of a catalyst to produce F-T hydrocarbon products. The F-T hydrocarbon products are then recovered from the reactor. The synthesis gas and acetylene may be provided in a combined feed stream or introduced separately into the reactor. The acetylene enhanced syngas conversion in a F-T reactor results in the synthesis of F-T products which have a tighter distribution of intermediate length carbon products than do F-T products synthesized according to conventional methods.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: September 4, 2012
    Assignees: Chevron U.S.A. Inc., Commonwealth Scientific and Industrial Research Organisation
    Inventors: Charles L. Kibby, Minquan Cheng, Yun Lei, David Lawrence Trimm, William L. Schinski
  • Patent number: 8216963
    Abstract: A method for forming a cobalt-containing Fischer-Tropsch catalyst involves precipitating a cobalt oxy-hydroxycarbonate species by turbulent mixing, during which a basic solution collides with an acidic solution comprising cobalt. The method further involves depositing the cobalt oxy-hydroxycarbonate species onto a support material to provide a catalyst comprising cobalt and the support material. The support material comprises one or more of alumina, silica, magnesia, titania, zirconia, ceria-zirconia, and magnesium aluminate.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: July 10, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Alfred Haas
  • Publication number: 20120172459
    Abstract: A method is disclosed for converting syngas to Fischer-Tropsch (F-T) hydrocarbon products. A synthesis gas including carbon monoxide and hydrogen gas is provided to a F-T reactor. Also, acetylene is supplied to the F-T reactor. The ratio of the volume of acetylene to the volume of synthesis gas is at least 0.01. The synthesis gas and acetylene are reacted under suitable reaction conditions and in the presence of a catalyst to produce F-T hydrocarbon products. The F-T hydrocarbon products are then recovered from the reactor. The synthesis gas and acetylene may be provided in a combined feed stream or introduced separately into the reactor. The acetylene enhanced syngas conversion in a F-T reactor results in the synthesis of F-T products which have a tighter distribution of intermediate length carbon products than do F-T products synthesized according to conventional methods.
    Type: Application
    Filed: March 15, 2012
    Publication date: July 5, 2012
    Applicants: Commonwealth Scientific and Industrial Research Organisation, Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Minquan Cheng, Yun Lei, David Lawrence Trimm, William L. Schinski
  • Publication number: 20120129959
    Abstract: Disclosed is a method of forming a hybrid Fischer-Tropsch catalyst extrudate for use in synthesis gas conversion reactions. The method includes extruding a mixture of ruthenium loaded metal oxide support particles, particles of an acidic component and a binder sol to form an extrudate. The resulting extrudate contains from about 0.1 to about 15 weight percent ruthenium based on the weight of the extrudate. In a synthesis gas conversion reaction, the extrudate is contacted with a synthesis gas having a H2 to CO molar ratio of 0.5 to 3.0 at a reaction temperature of 160° C. to 300° C., a total pressure of 3 to 35 atmospheres, and an hourly space velocity of 5 to 10,000 v/v/hour, resulting in hydrocarbon products containing 1-15 weight % CH4; 1-15 weight % C2-C4; 70-95 weight % C5+; 0-5 weight % C21+ normal paraffins; and 0-10 weight % aromatic hydrocarbons.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Inventors: Kandaswamy Jothimurugesan, Tapan Das, Charles L. Kibby, Robert J. Saxton
  • Publication number: 20120129960
    Abstract: The disclosure relates to a method of performing a synthesis gas conversion reaction in which synthesis gas contacts a catalyst system including a mixture of ruthenium loaded Fischer-Tropsch catalyst particles and at least one set of catalyst particles including an acidic component promoted with a noble metal, e.g., Pt or Pd. The reaction occurs at conditions resulting in a hydrocarbons product containing 1-15 weight % CH4, 1-15 weight % C2-C4, 70-95 weight % C5+, 0-5 weight % C21+ normal paraffins, and 0-10 weight % aromatic hydrocarbons.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Inventors: Tapan Das, Kandaswamy Jothimurugesan, Charles L. Kibby, Robert J. Saxton
  • Publication number: 20120108682
    Abstract: Disclosed is a process for converting synthesis gas to liquid hydrocarbon mixtures useful in the production of fuels and petrochemicals. The synthesis gas is contacted with at least two layers of synthesis gas conversion catalyst wherein each synthesis gas conversion catalyst layer is followed by a layer of hydrocracking catalyst and hydroisomerization catalyst or separate layers of hydrocracking and hydroisomerization catalysts. The process can occur within a single reactor, at an essentially common reactor temperature and an essentially common reactor pressure. The process provides a high yield of naphtha range liquid hydrocarbons and a low yield of wax.
    Type: Application
    Filed: August 11, 2011
    Publication date: May 3, 2012
    Applicant: Chevron U.S.A. Inc.
    Inventors: Robert J. Saxton, Charles L. Kibby, Kandaswamy Jothimurugesan, Tapan Das
  • Patent number: 8163808
    Abstract: A method is disclosed for converting syngas to Fischer-Tropsch (F-T) hydrocarbon products. A synthesis gas including carbon monoxide and hydrogen gas is provided to a F-T reactor. Also, acetylene is supplied to the F-T reactor. The ratio of the volume of acetylene to the volume of synthesis gas is at least 0.01. The synthesis gas and acetylene are reacted under suitable reaction conditions and in the presence of a catalyst to produce F-T hydrocarbon products. The F-T hydrocarbon products are then recovered from the reactor. The synthesis gas and acetylene may be provided in a combined feed stream or introduced separately into the reactor. The acetylene enhanced syngas conversion in a F-T reactor results in the synthesis of F-T products which have a tighter distribution of intermediate length carbon products than do F-T products synthesized according to conventional methods.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: April 24, 2012
    Assignees: Chevron U.S.A. Inc., Commonwealth Scientific and Industrial Research Organisation
    Inventors: Charles L. Kibby, Minquan Cheng, Yun Lei, David Lawrence Trimm, William L. Schinski
  • Publication number: 20110306685
    Abstract: A method is provided for converting synthesis gas to liquid hydrocarbon mixtures useful as distillate fuel and/or lube base oil containing no greater than about 25 wt % olefins and containing no greater than about 5 wt % C21+ normal paraffins. The synthesis gas is contacted with a synthesis gas conversion catalyst comprising a Fischer-Tropsch synthesis component and an acidic component in an upstream catalyst bed thereby producing a wax-free liquid containing a paraffin component and an olefin component. The olefin component is saturated by contacting the liquid with an olefin saturation catalyst in a downstream catalyst bed.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 15, 2011
    Inventors: Charles L. Kibby, Robert J. Saxton, Kandaswamy Jothimurugesan, Tapan K. Das
  • Patent number: 7973087
    Abstract: A process is disclosed for converting a feed comprising synthesis gas to liquid hydrocarbons within a single reactor at essentially common reaction conditions. The synthesis gas contacts a catalyst bed comprising a mixture of a synthesis gas conversion catalyst on a support containing an acidic component and a dual functionality catalyst including a hydrogenation component and a solid acid component. The hydrocarbons produced are liquid at about 0° C., contain at least 25% by volume C10+ and are substantially free of solid wax.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: July 5, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Kandaswamy Jothimurugesan, Tapan K. Das, Robert J. Saxton, Allen W. Burton, Jr.
  • Patent number: 7973086
    Abstract: Disclosed is a process for converting synthesis gas to liquid hydrocarbon mixtures useful in the production of fuels and petrochemicals. The synthesis gas is contacted with at least two layers of synthesis gas conversion catalyst and at least two layers of acidic hydrocracking catalyst in an alternating layer arrangement within a single reactor tube wherein each synthesis gas conversion catalyst layer is followed by a layer of hydrocracking catalyst. The process is conducted within a single reactor at an essentially common reactor temperature and an essentially common reactor pressure. The process provides a high yield of naphtha range liquid hydrocarbons and a low yield of C21+ normal paraffins.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 5, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Robert J. Saxton, Charles L. Kibby, Kandaswamy Jothimurugesan, Tapan Das
  • Publication number: 20110160315
    Abstract: A process is disclosed for converting synthesis gas to a liquid hydrocarbon mixture useful as distillate fuel and/or lube base oil which is substantially free of solid wax. A synthesis gas feed is contacted with a synthesis gas conversion catalyst in an upstream bed and a hydroisomerization catalyst containing a metal promoter and an acidic component in a downstream bed within a single reactor at essentially common reaction conditions. A Fischer-Tropsch wax is formed over the synthesis gas conversion catalyst and said wax is subsequently hydroisomerized over the hydroisomerization catalyst, thereby resulting in a liquid hydrocarbon mixture having a desirable product distribution.
    Type: Application
    Filed: May 14, 2010
    Publication date: June 30, 2011
    Inventors: Charles L. Kibby, Robert J. Saxton, Kandaswamy Jothimurugesan, Tapan K. Das