Patents by Inventor Charles Mendler

Charles Mendler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125330
    Abstract: According to the present invention, the impeller inlet of a turbocharger compressor receives intake air from an inner channel and an outer channel. The outer channel is pressurized with an electrically powered secondary compressor. The pressurized air in the outer channel flows into the impeller near the outer wall of the impeller inlet. The pressurized air next to the outer wall of the impeller inlet prevents backflow of air out of the impeller and thereby prevents surge and enables the compressor to produce high boost pressures under small mass flow settings. Only a portion of the intake air is pressurized with the electrically powered secondary compressor, and the boost pressure of the electrical compressor is only a fraction of the turbocharger compressor's overall pressure ratio.
    Type: Application
    Filed: July 21, 2020
    Publication date: April 18, 2024
    Inventor: Edward Charles Mendler
  • Publication number: 20200284187
    Abstract: Bypass air from downstream of the compressor is directed into a heat exchanger that draws heat from the exhaust gas of the engine. The bypass air does not include fuel, and instead is heated by the exhaust gas in the heat exchanger. The bypass duct enables air mass flow through the compressor to be increased, thereby preventing compressor surge at low engine speeds. The turbocharger turbine includes a dual entry scroll. The bypass air is fed into the first scroll after being heated in the heat exchanger, and the engine' exhaust gas is fed into the second scroll. Use of two scrolls enables the blowdown impulse energy of the exhaust gas to be retained within the exhaust manifold prior to entry into the turbine, thereby providing improved turbocharger response and preventing backflow of exhaust gas into the bypass duct. Using the exhaust energy to heat the bypass air instead of combusting additional fuel leads to increased engine efficiency.
    Type: Application
    Filed: December 6, 2016
    Publication date: September 10, 2020
    Inventor: Edward Charles Mendler
  • Patent number: 10408095
    Abstract: An endless band drive system having a variable center distance between the drive pulley and the driven pulley also has a rotatable control shaft and an endless band guide, where the guide is positioned by the rotatable control shaft for maintaining a slackless endless band with change of pulley center distance. Rotation of the control shaft pivots the endless band guide thereby maintaining a slackless endless band with change of the pulley center distance. Preferably, the rotatable control shaft also provides means for adjusting the center distance between the drive pulley and the driven pulley. The present invention provides a slackless endless band system for a variable compression ratio engine having a variable center distance between the drive pulley mounted on the crankshaft and the driven pulley mounted on the camshaft. The system provides slackless operation of the endless band at two or more compression ratio values.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: September 10, 2019
    Inventor: Edward Charles Mendler
  • Patent number: 10316737
    Abstract: According to the present invention, a rotary blower or supercharger includes a recirculation loop for readmitting pressurized outlet gas back into the rotor chambers, and cooling means for cooling the pressurized outlet gas before it is readmitted into the rotor chambers, thereby providing a supercharger having a lower operating temperature and a higher operating pressure capability. In the preferred embodiment of the present invention, a supercharger includes a housing assembly defining first and second transversely overlapping cylindrical chambers. The housing defines an inlet port for the inflow of an inlet gas, and an outlet port for the outflow of the outlet gas. The supercharger further has first and second meshed, lobed rotors respectively disposed in the chambers for counter rotation about axes substantially coincident with the chamber axes.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: June 11, 2019
    Inventor: Edward Charles Mendler, III
  • Patent number: 10253701
    Abstract: According to the present invention an expandable joint is made without removable bearing caps by preassembling eccentric bushings onto the hinge pin. The expandable joint has a hinge type construction, but with the journals for each side of the hinge being spaced apart so that the distance between the two sides of the hinge changes with rotation of the hinge pin. The expandable joint of the present invention is assembled by sliding the hinge pin into the hinged joint with the eccentric bushings attached. Once the hinge pin is in place, the eccentric bushings are locked in place with fasteners so that they do not rotate. After the eccentric bushings are locked in place, the hinge pin can be turned to expand the joint. The expandable joint is intended for use in variable compression ratio engines, where expansion of the joint changes the compression ratio of the engine.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: April 9, 2019
    Inventor: Edward Charles Mendler
  • Patent number: 10184394
    Abstract: According to the present invention a variable compression ratio engine having a pair of eccentric control shafts, a crankcase and a cylinder jug has contiguous metal casting bearing sockets located in the crankcase for supporting the eccentric control shaft, and an eccentric control shaft axis location close in to the working cylinders, and located between the bottom edge of the working cylinders and the floor of the water jacket, thereby providing a rigid and compact crankcase and cylinder jug assembly. Nesting of the eccentric control shafts under the water jacket and close in to the cylinder bores, and also eliminating use of removable bearing caps in the crankcase provides a compact and rigid crankcase and cylinder jug assembly. Side walls that extend above and below the eccentric control shafts provide added rigidity and also enclose the crankcase for containing oil within the crankcase.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: January 22, 2019
    Inventor: Edward Charles Mendler
  • Publication number: 20180328273
    Abstract: According to the present invention a variable compression ratio engine having a pair of eccentric control shafts, a crankcase and a cylinder jug has contiguous metal casting bearing sockets located in the crankcase for supporting the eccentric control shaft, and an eccentric control shaft axis location close in to the working cylinders, and located between the bottom edge of the working cylinders and the floor of the water jacket, thereby providing a rigid and compact crankcase and cylinder jug assembly. Nesting of the eccentric control shafts under the water jacket and close in to the cylinder bores, and also eliminating use of removable bearing caps in the crankcase provides a compact and rigid crankcase and cylinder jug assembly. Side walls that extend above and below the eccentric control shafts provide added rigidity and also enclose the crankcase for containing oil within the crankcase.
    Type: Application
    Filed: May 24, 2016
    Publication date: November 15, 2018
    Inventor: Edward Charles Mendler
  • Publication number: 20180179987
    Abstract: According to the present invention a closed cell compressible sponge is used to provide a seal between the cylinder head assembly and the crankcase assembly in variable compression ratio engines. The closed cell sponge is capable of accommodating large travel distances and can be fabricated out of durable rubber. The sponge gasket also does not flap, and is effective at isolating noise inside the crankcase.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 28, 2018
    Inventor: Edward Charles Mendler
  • Publication number: 20180023487
    Abstract: According to the present invention an expandable joint is made without removable bearing caps by preassembling eccentric bushings onto the hinge pin. The expandable joint has a hinge type construction, but with the journals for each side of the hinge being spaced apart so that the distance between the two sides of the hinge changes with rotation of the hinge pin. The expandable joint of the present invention is assembled by sliding the hinge pin into the hinged joint with the eccentric bushings attached. Once the hinge pin is in place, the eccentric bushings are locked in place with fasteners so that they do not rotate. After the eccentric bushings are locked in place, the hinge pin can be turned to expand the joint. The expandable joint is intended for use in variable compression ratio engines, where expansion of the joint changes the compression ratio of the engine.
    Type: Application
    Filed: February 22, 2016
    Publication date: January 25, 2018
    Inventor: Edward Charles Mendler
  • Publication number: 20170328243
    Abstract: An endless band drive system having a variable center distance between the drive pulley and the driven pulley also has a rotatable control shaft and an endless band guide, where the guide is positioned by the rotatable control shaft for maintaining a slackless endless band with change of pulley center distance. Rotation of the control shaft pivots the endless band guide thereby maintaining a slackless endless band with change of the pulley center distance. Preferably, the rotatable control shaft also provides means for adjusting the center distance between the drive pulley and the driven pulley. The present invention provides a slackless endless band system for a variable compression ratio engine having a variable center distance between the drive pulley mounted on the crankshaft and the driven pulley mounted on the camshaft. The system provides slackless operation of the endless band at two or more compression ratio values.
    Type: Application
    Filed: January 4, 2016
    Publication date: November 16, 2017
    Inventor: Edward Charles Mendler
  • Publication number: 20170241327
    Abstract: According to the present invention, a rotary blower or supercharger includes a recirculation loop for readmitting pressurized outlet gas back into the rotor chambers, and cooling means for cooling the pressurized outlet gas before it is readmitted into the rotor chambers, thereby providing a supercharger having a lower operating temperature and a higher operating pressure capability. In the preferred embodiment of the present invention, a supercharger includes a housing assembly defining first and second transversely overlapping cylindrical chambers. The housing defines an inlet port for the inflow of an inlet gas, and an outlet port for the outflow of the outlet gas. The supercharger further has first and second meshed, lobed rotors respectively disposed in the chambers for counter rotation about axes substantially coincident with the chamber axes.
    Type: Application
    Filed: April 10, 2015
    Publication date: August 24, 2017
    Inventor: Edward Charles Mendler, III
  • Patent number: 9273605
    Abstract: According to the present invention, a variable compression ratio engine includes a cylinder head and crankcase directly joined by a control shaft, thereby eliminating use of a link between the control shaft and cylinder head. The present invention has a low manufacturing cost and a small size ideal for mass production applications. In the preferred embodiment of the present invention, the control shaft includes a primary set of bearings and an eccentric set of bearings. The primary control shaft set of bearings are mounted directly in the crankcase assembly, and the eccentric control shaft bearings are mounted directly in the cylinder head assembly. There is only one control shaft per cylinder head, and there is no link between the control shaft and cylinder head assembly. The variable compression ratio mechanism also includes moment retaining means to prevent the cylinder head assembly from rotating out of alignment when the engine is running.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: March 1, 2016
    Inventor: Edward Charles Mendler
  • Publication number: 20150096540
    Abstract: According to the present invention, a variable compression ratio engine includes a cylinder head and crankcase directly joined by a control shaft, thereby eliminating use of a link between the control shaft and cylinder head. The present invention has a low manufacturing cost and a small size ideal for mass production applications. In the preferred embodiment of the present invention, the control shaft includes a primary set of bearings and an eccentric set of bearings. The primary control shaft set of bearings are mounted directly in the crankcase assembly, and the eccentric control shaft bearings are mounted directly in the cylinder head assembly. There is only one control shaft per cylinder head, and there is no link between the control shaft and cylinder head assembly. The variable compression ratio mechanism also includes moment retaining means to prevent the cylinder head assembly from rotating out of alignment when the engine is running.
    Type: Application
    Filed: January 24, 2013
    Publication date: April 9, 2015
    Inventor: Edward charles MENDLER
  • Publication number: 20110033234
    Abstract: According to the present invention, a variable compression ratio engine having crankshaft main bearings mounted in one or more eccentrics includes a power take-off coupling having a single link or linkage. In the preferred embodiment of the present invention a drive arm is integrated into the crankshaft and a driven arm is integrated into the torque converter or clutch housing. The power take-off coupling further has a linkage having a first linkage end and a second linkage end. The first linkage end is pivotally connected to the drive arm and the second linkage end is pivotally connected to the driven arm for transferring torque from the crankshaft to the torque converter or clutch housing. According to the preferred embodiment of the present invention, the power take-off coupling has only one link. The link, drive arm and driven arm are all rigid components made out of steel or other suitably stiff and strong metal. The single link is exceptionally robust, reliable and simple.
    Type: Application
    Filed: March 18, 2008
    Publication date: February 10, 2011
    Inventor: Edward Charles Mendler
  • Publication number: 20100133031
    Abstract: According to the present invention a pump is driven by one or more wheels of a hydraulic hybrid vehicle during braking. The inertial energy of the vehicle powers the pump during braking of the vehicle, and the pump pumps a hydraulic liquid into an hydraulic accumulator that stores the fluid at its elevated pressure. When additional power is required by the vehicle, the liquid is released into a heat exchanger that transfers heat from the exhaust gas of the engine to the liquid causing at least a portion of the liquid to become gaseous. The heated fluid is then fed into an expander that generates shaft power by expanding the pressurized and heated gaseous and/or liquid fluid mixture. The preferred embodiment of the present invention operates under the Rankine cycle or steam engine cycle where the liquid compression function is performed using power from regenerative braking, and the liquid heating and vaporization function is performed using exhaust gas waste heat.
    Type: Application
    Filed: May 15, 2008
    Publication date: June 3, 2010
    Inventor: Edward Charles Mendler
  • Publication number: 20100006057
    Abstract: According to the present invention, a variable compression ratio machine having main bearings mounted in an eccentric carrier or support includes an oil seal located primarily in a main bearing cap for minimizing leakage of pressurized main bearing oil. The seal is located generally in a first main bearing fastener socket or fastener access cutout in order to minimize structurally compromising the bearing cap, and a portion of the fastener socket preferably is used as an oil passageway as well as for wrench access to the fastener. The oil seal and oil circuit of the present invention enable the size of the eccentric support to be minimized while also providing highly effective oil sealing. In more detail, a significant advantage of the present invention is that highly effective oil sealing is attained without compromising the size or structural integrity of the bearing cap. A second significant advantage of the present invention is that it can be manufactured and assembled at low cost.
    Type: Application
    Filed: September 25, 2007
    Publication date: January 14, 2010
    Inventor: Edward Charles Mendler
  • Patent number: 7146949
    Abstract: A first camshaft (24) operates the exhaust valves (18) and a first intake valve (12) for each cylinder (8), and a second camshaft (38) operates the second intake valve per cylinder (14), the second camshaft further having a phase adjuster (62) for adjusting the timing of the second camshaft (38) relative to the first camshaft (24). Both the exhaust valves and the first intake valve are actuated by rocker arms (30), (36), for providing a short and light-weight first intake valve rocker (36) having a high maximum operational speed capability and low friction. The first camshaft (24) is located above the rockers, the cam followers are located generally in the middle of the rockers (30), (36), and the rocker mounts (33), (35) are located on the inboard ends of the rockers, providing rockers that have both light-weight and a small pivot angle for providing low valve stem to rocker friction.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: December 12, 2006
    Inventor: Edward Charles Mendler
  • Patent number: 6848408
    Abstract: The volumetric efficiency and power of internal combustion engines is improved with an intake port having an intake nozzle, a venturi, and a surge chamber. The venturi is located almost halfway upstream the intake port between the intake valves and the intake plenum enabling the venturi throat diameter to be exceptionally small for providing an exceptionally high ram velocity and an exceptionally long and in turn high efficiency diffuser flowing into the surge chamber. The intake port includes an exceptionally large surge chamber volume for blow down of the intake air into the working cylinder of the engine.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: February 1, 2005
    Inventor: Edward Charles Mendler
  • Publication number: 20040237918
    Abstract: A first camshaft (24) operates the exhaust valves (18) and a first intake valve (12) for each cylinder (8), and a second camshaft (38) operates the second intake valve per cylinder (14), the second camshaft further having a phase adjuster (62) for adjusting the timing of the second camshaft (38) relative to the first camshaft (24). Both the exhaust valves and the first intake valve arc actuated by rocker arms (30),(36), for providing a short and light-weight first intake valve rocker (36) having a high maximum operational speed capability and low friction. The first camshaft (24) is located above the rockers, the cam followers are located generally in the middle of the rockers (30),(36), and the rocker mounts (33),(35) are located on the inboard ends of the rockers, providing rockers that have both light-weight and a small pivot angle for providing low valve stem to rocker friction.
    Type: Application
    Filed: October 1, 2003
    Publication date: December 2, 2004
    Inventor: Edward Charles Mendler
  • Patent number: 6637384
    Abstract: Crankshaft main bearing failure in variable compression ratio engines having eccentric main bearing supports is prevented by supporting the bearings in a crankshaft cradle (16) having a high stiffness and a high natural frequency. The crankshaft cradle (16) is rotatable mounted in the engine on a first axis, and the crankshaft (8) is mounted in the crankshaft cradle (16) on a second axis off-set from the first axis, the first axis and the second axis defining a first plane. The crankshaft cradle comprises a primary eccentric member (24) and a plurality of smaller bearing caps (26) separated by a parting line. The crankshaft cradle comprises accentric members (24) that support the bearing element (64), and structural webbing (72) that rigidly holds the eccentric members (24) in alignment with one another at all times.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: October 28, 2003
    Inventor: Edward Charles Mendler