Patents by Inventor Charles Michael Booth

Charles Michael Booth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9410451
    Abstract: The present application provides an integrated bottoming cycle system for use with a gas turbine engine. The integrated bottoming cycle system described herein may include a compressor/pump, a cooling circuit downstream of the compressor/pump, a bottoming cycle heat exchanger, a heating circuit downstream of the bottoming cycle heat exchanger, and a number of turbine components in communication with the cooling circuit and/or the heating circuit to maximize the overall plant efficiency and economics.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: August 9, 2016
    Assignee: General Electric Company
    Inventors: Donald Gordon Laing, Charles Michael Booth
  • Publication number: 20140157776
    Abstract: A solar energy receiver includes a plurality of solar receiver elements. Each solar receiver element includes a substantially solid core configured to absorb solar radiation and to store the solar radiation as heat. The core includes a base surface and a plurality of absorption surfaces. The receiver further includes at least one fluid passageway defined within the core adjacent at least one absorption surface of the plurality of absorption surfaces, wherein the at least one fluid passageway is configured to channel a working fluid therethrough for absorbing heat stored in the core.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sebastian Walter Freund, Charles Michael Booth, Chiranjeev Singh Kalra
  • Publication number: 20140150443
    Abstract: The present application provides an integrated bottoming cycle system for use with a gas turbine engine. The integrated bottoming cycle system described herein may include a compressor/pump, a cooling circuit downstream of the compressor/pump, a bottoming cycle heat exchanger, a heating circuit downstream of the bottoming cycle heat exchanger, and a number of turbine components in communication with the cooling circuit and/or the heating circuit to maximize the overall plant efficiency and economics.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 5, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Donald Gordon Laing, Charles Michael Booth
  • Patent number: 8434308
    Abstract: A first portion of each of a plurality of Qu-type heat pipes is disposed in a hot gas path, and a second portion of each of the plurality of Qu-type heat pipes disposed away from the hot gas path. Also, the first portion of each of the plurality of Qu-type heat pipes extracts heat from the hot gas path and wherein the second portion of each of the plurality of Qu-type heat pipes creates a vapor that exits each second portion of the plurality of Qu-type heat pipes and away from the hot gas path.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: May 7, 2013
    Assignee: General Electric Company
    Inventors: Charles Michael Booth, Larry William Swanson, Robert Warren Taylor
  • Patent number: 8341964
    Abstract: A power generation system includes a first compressor, a second compressor, a combustor configured to receive compressed air from the second compressor to produce an exhaust stream, a first turbine, and a power turbine. The first turbine is configured to receive the exhaust stream, generate a rotational power from the exhaust stream, output the rotational power to a second compressor, and output the exhaust stream. The system includes a coupling device configured to couple and decouple the first compressor to/from a second turbine, an electrical generator coupled to an output of the power turbine and configured to output electrical power, and a controller configured to cause the coupling device to mechanically decouple the second turbine from the first compressor, and cause the coupling device to direct compressed air from an air storage cavern to an inlet of the second compressor.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: January 1, 2013
    Assignee: General Electric Company
    Inventors: Matthias Finkenrath, Balachandar Naidu, Charles Michael Booth, Garland Ferguson, Stephanie Marie-Noelle Hoffmann, Sebastian W. Freund
  • Patent number: 8236093
    Abstract: A method of reducing the concentration of pollutants in a combustion flue gas having a first temperature is provided. The method includes the step of providing an organic Rankine cycle apparatus utilizing a working fluid and including at least one heat exchanger is arranged in thermal communication with the flue gas. The method further includes the step of reducing the temperature of the flue gas to a second temperature less than the first temperature by vaporizing the working fluid within the heat exchanger utilizing thermal energy derived from the flue gas. The method further includes the step of filtering the flue gas through at least one filter disposed downstream of the heat exchanger to remove pollutants from the flue gas. An associated system configured to reduce the concentration of pollutants in the combustion flue gas is also provided.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: August 7, 2012
    Assignee: BHA Group, Inc.
    Inventors: Robert Warren Taylor, James Easel Roberts, Charles Michael Booth
  • Publication number: 20110094236
    Abstract: A power generation system includes a first compressor, a second compressor, a combustor configured to receive compressed air from the second compressor to produce an exhaust stream, a first turbine, and a power turbine. The first turbine is configured to receive the exhaust stream, generate a rotational power from the exhaust stream, output the rotational power to a second compressor, and output the exhaust stream. The system includes a coupling device configured to couple and decouple the first compressor to/from a second turbine, an electrical generator coupled to an output of the power turbine and configured to output electrical power, and a controller configured to cause the coupling device to mechanically decouple the second turbine from the first compressor, and cause the coupling device to direct compressed air from an air storage cavern to an inlet of the second compressor.
    Type: Application
    Filed: October 27, 2009
    Publication date: April 28, 2011
    Inventors: Matthias Finkenrath, Balachandar Naidu, Charles Michael Booth, Garland Ferguson, Stephanie Marie-Noelle Hoffmann, Sebastian W. Freund
  • Publication number: 20110061386
    Abstract: A first portion of each of a plurality of Qu-type heat pipes is disposed in a hot gas path, and a second portion of each of the plurality of Qu-type heat pipes disposed away from the hot gas path. Also, the first portion of each of the plurality of Qu-type heat pipes extracts heat from the hot gas path and wherein the second portion of each of the plurality of Qu-type heat pipes creates a vapor that exits each second portion of the plurality of Qu-type heat pipes and away from the hot gas path.
    Type: Application
    Filed: September 15, 2009
    Publication date: March 17, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Charles Michael Booth, Larry William Swanson, Robert Warren Taylor
  • Publication number: 20110061528
    Abstract: A method of reducing the concentration of pollutants in a combustion flue gas having a first temperature is provided. The method includes the step of providing an organic Rankine cycle apparatus utilizing a working fluid and including at least one heat exchanger is arranged in thermal communication with the flue gas. The method further includes the step of reducing the temperature of the flue gas to a second temperature less than the first temperature by vaporizing the working fluid within the heat exchanger utilizing thermal energy derived from the flue gas. The method further includes the step of filtering the flue gas through at least one filter disposed downstream of the heat exchanger to remove pollutants from the flue gas. An associated system configured to reduce the concentration of pollutants in the combustion flue gas is also provided.
    Type: Application
    Filed: September 16, 2009
    Publication date: March 17, 2011
    Applicant: BHA Group, Inc.
    Inventors: Robert Warren Taylor, James Easel Roberts, Charles Michael Booth