Patents by Inventor Charles Michael Jones

Charles Michael Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10851990
    Abstract: The present application provides an energy control computing device for adjusting one or more steam flow parameters delivered to a steam turbine from a heat recovery steam generator via a number of control devices. The energy control computing device includes a processor in communication with a memory. The processor is programmed to receive a number of measured operating values, identify steam turbine operating limits, identify a number of candidate operating modes meeting steam turbine operating limits, selecting the candidate operating mode maximizing the steam flow parameters while not exceeding the steam turbine operating limits, and directing the control devices to meet the selected candidate operating mode.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: December 1, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Charles Michael Jones, Robert John Gdaniec, Raub Warfield Smith, Francois Droux
  • Publication number: 20200284427
    Abstract: The present application provides an energy control computing device for adjusting one or more steam flow parameters delivered to a steam turbine from a heat recovery steam generator via a number of control devices. The energy control computing device includes a processor in communication with a memory. The processor is programmed to receive a number of measured operating values, identify steam turbine operating limits, identify a number of candidate operating modes meeting steam turbine operating limits, selecting the candidate operating mode maximizing the steam flow parameters while not exceeding the steam turbine operating limits, and directing the control devices to meet the selected candidate operating mode.
    Type: Application
    Filed: March 5, 2019
    Publication date: September 10, 2020
    Inventors: Charles Michael JONES, Robert John GDANIEC, Raub Warfield SMITH, Francois DROUX
  • Patent number: 10041378
    Abstract: A method for adjusting startup floor pressure levels of HRSG steam circuits is implemented by a pressure controlling computing device including a processor and a memory. The method includes receiving a plurality of measured plant operating values associated with a HRSG steam circuit, identifying a plurality of candidate pressure levels for use in pressurizing the HRSG steam circuit, determining a calculated steam velocity level for each of the plurality of candidate pressure levels, identifying a steam velocity limit for a steam piping section of the HRSG steam circuit, selecting a lowest pressure level of the plurality of candidate pressure levels, wherein the lowest pressure level is associated with a determined calculated steam velocity level that does not exceed the identified velocity limit, and pressurizing the HRSG steam circuit to the selected lowest pressure level.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: August 7, 2018
    Assignee: General Electric Company
    Inventors: Leslie Yung Min Tong, Raub Warfield Smith, Diego Fernando Rancruel, Erhan Karaca, Charles Michael Jones, Bryan Michael Jones
  • Patent number: 9540959
    Abstract: A system and method for generating electric power using a generator coupled to a turboexpander is disclosed. The system includes one or more thermal pumps configured for heating a fluid to generate a pressurized gas. A portion of the pressurized gas is discharged to a buffer chamber for further utilization in a Rankine system. A further portion of the pressurized gas is expanded in a turboexpander for driving a generator for generating electric power. Optionally, the system includes a pump to pressurize a portion of the fluid depending on the systems operating condition. The system further includes one or more sensors for sensing temperature and pressure and outputs one or more signals representative of the sensed state. The system includes a control unit for receiving the signals and outputs one or more control signals for controlling the flow of gases and liquid in the valves and the check valve.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: January 10, 2017
    Assignee: General Electric Company
    Inventors: Sebastian Walter Freund, Matthew Alexander Lehar, William Joseph Antel, Jr., Pierre Sébastien Huck, Hannes Christopher Buck, Trevor James Kirsten, Kenneth William Kohl, Matthew Michael Lampo, Charles Michael Jones, Amit Gaikwad, Lars Olof Nord
  • Publication number: 20160201518
    Abstract: A method for adjusting startup floor pressure levels of HRSG steam circuits is implemented by a pressure controlling computing device including a processor and a memory. The method includes receiving a plurality of measured plant operating values associated with a HRSG steam circuit, identifying a plurality of candidate pressure levels for use in pressurizing the HRSG steam circuit, determining a calculated steam velocity level for each of the plurality of candidate pressure levels, identifying a steam velocity limit for a steam piping section of the HRSG steam circuit, selecting a lowest pressure level of the plurality of candidate pressure levels, wherein the lowest pressure level is associated with a determined calculated steam velocity level that does not exceed the identified velocity limit, and pressurizing the HRSG steam circuit to the selected lowest pressure level.
    Type: Application
    Filed: January 8, 2015
    Publication date: July 14, 2016
    Inventors: Leslie Yung Min Tong, Raub Warfield Smith, Diego Fernando Rancruel, Erhan Karaca, Charles Michael Jones, Bryan Michael Jones
  • Publication number: 20140117670
    Abstract: A system and method for generating electric power using a generator coupled to a turboexpander is disclosed. The system includes one or more thermal pumps configured for heating a fluid to generate a pressurized gas. A portion of the pressurized gas is discharged to a buffer chamber for further utilization in a Rankine system. A further portion of the pressurized gas is expanded in a turboexpander for driving a generator for generating electric power. Optionally, the system includes a pump to pressurize a portion of the fluid depending on the systems operating condition. The system further includes one or more sensors for sensing temperature and pressure and outputs one or more signals representative of the sensed state. The system includes a control unit for receiving the signals and outputs one or more control signals for controlling the flow of gases and liquid in the valves and the check valve.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sebastian Walter Freund, Matthew Alexander Lehar, William Joseph Antel, Jr., Pierre Sébastien Huck, Hannes Christopher Buck, Trevor James Kirsten, Kenneth William Kohl, Matthew Michael Lampo, Charles Michael Jones, Amit Gaikwad, Lars Olof Nord
  • Publication number: 20110036096
    Abstract: In an integrated gasification power plant a steam recovery system is provided. The system enables power generation equipment designed for a predominant fuel and operating condition to efficiently utilize additional steam generation by syngas coolers when heat transfer surface condition or fuel characteristics enable additional steam generation. The system can detect excess steam generation, integrate it with the syngas cleaning process and transmit it to the power generation equipment. The system results in a low cost power generation system which is capable of efficiently operating with a wide range of fuels and a wide rang of operating conditions.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 17, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sampath Kumar Bommareddy, Douglas Kirk Holland, Charles Michael Jones, Darrin Glen Kirchhof, James Michael Storey, Leroy Omar Tomlinson
  • Patent number: 7621133
    Abstract: Methods and apparatus for fast starting and loading a combined cycle power system are described. In one example embodiment, the method includes loading the gas turbine at up to it's maximum rate, and loading the steam turbine at its maximum rate with excess steam bypassed to the condenser while maintaining the temperature of steam supplied to the steam turbine at a substantially constant temperature from initial steam admission into the steam turbine until all steam generated by the heat recovery steam generator is being admitted to the steam turbine while the gas turbine operates at up to maximum load.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: November 24, 2009
    Assignee: General Electric Company
    Inventors: Leroy Omar Tomlinson, Charles Michael Jones, Gordon Raymond Smith, Mark Joseph Steffen, Bruce Charles Martindale, Marc Trent Kazanas, Paul Ronan Murphy, Gurbaksh Singh Ohson, Steven David Shemo, Eric YuHang Fung
  • Patent number: 6499303
    Abstract: A method and apparatus for power augmentation in gas turbine cycles is provided that efficiently provides at least air and preferably both steam and air injection. In an embodiment of the invention, an air injection compressor is driven with steam used for gas turbine injection prior to its injection into the gas turbine. In addition to power output, the thermodynamic efficiency is improved in simple cycle turbine power plants with the disclosed method and apparatus.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: December 31, 2002
    Assignee: General Electric Company
    Inventors: Peter Paul Polukort, Jatila Ranasinghe, Charles Michael Jones
  • Patent number: 6446440
    Abstract: A steam injection and inlet fogging system is provided for a gas turbine power plant that includes a gas turbine having a compressor, a combustor and a turbine for driving a generator. A waste heat recovery unit is arranged to receive exhaust gas from the turbine, the former having a plurality of heat exchange sections for heating water with the exhaust gas. A flash tank is arranged to receive heated water from the waste heat recovery unit for producing steam. A first stream of makeup water from a first of the plurality of heat exchange sections is flashed to the flash tank to also produce saturated steam and water at a first location in the flash tank. A second stream of water from a second of the plurality of heat exchange sections is also flashed to the flash tank to produce saturated steam and water at a second location in the flash tank.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: September 10, 2002
    Assignee: General Electric Company
    Inventors: Jatila Ranasinghe, Charles Michael Jones, Robert Russell Priestley
  • Patent number: 6422022
    Abstract: To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: July 23, 2002
    Assignee: General Electric Company
    Inventors: William G. Gorman, William George Carberg, Charles Michael Jones
  • Patent number: 6357218
    Abstract: A heat rejection system is provided in a recirculating flow line, so that the steam production rate can be controlled from no steam production to maximum steam production for the gas turbine operating condition. For maximum steam production, the heat exchanger of the heat rejection system is bypassed so all the water is directed to the heat recovery unit (HRU). When no steam production is desired, all or a majority of the water is directed to the heat exchanger such that the heat absorbed in the HRU evaporator is equal to the heat rejected by the air cooled heat exchanger. Adjusting the flow split between these two limits allows the steam production rate to vary from no production to the maximum steam production capability corresponding to the gas turbine operating point.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: March 19, 2002
    Assignee: General Electric Company
    Inventors: Jatila Ranasinghe, Charles Michael Jones, Robert Russell Priestley
  • Publication number: 20020002819
    Abstract: To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature.
    Type: Application
    Filed: July 17, 2001
    Publication date: January 10, 2002
    Inventors: William G. Gorman, William George Carberg, Charles Michael Jones