Patents by Inventor Charles N. Dornfest

Charles N. Dornfest has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7629031
    Abstract: Plasma Enhanced Bonding (PEB) during a coating process is used to improve both adhesion and corrosion resistance of the resulting coating. New interfacial compounds may be formed, offering the increased resistance to corrosion, as well as enhanced bonding to the workpiece being coated and any subsequently formed layer, such as diamond-like carbon. In one embodiment, the PEB processing is employed during coating of at least one interior surface of the workpiece, which may be a pipe. In a first step, a thin film is deposited. Then, the film is exposed to a high energy etch-back plasma. This two-step cycle of depositing a film and then providing bombardment of the film may be repeated a number of times. Typically, the deposition step of the cycle is much shorter than the bombardment step.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: December 8, 2009
    Assignee: Sub-One Technology, Inc.
    Inventors: Charles N. Dornfest, Deepak Upadhyaya, William John Boardman, Karthik Boinapally
  • Publication number: 20090017222
    Abstract: Plasma Enhanced Bonding (PEB) during a coating process is used to improve both adhesion and corrosion resistance of the resulting coating. New interfacial compounds may be formed, offering the increased resistance to corrosion, as well as enhanced bonding to the workpiece being coated and any subsequently formed layer, such as diamond-like carbon. In one embodiment, the PEB processing is employed during coating of at least one interior surface of the workpiece, which may be a pipe. In a first step, a thin film is deposited. Then, the film is exposed to a high energy etch-back plasma. This two-step cycle of depositing a film and then providing bombardment of the film may be repeated a number of times. Typically, the deposition step of the cycle is much shorter than the bombardment step.
    Type: Application
    Filed: December 31, 2007
    Publication date: January 15, 2009
    Inventors: Charles N. Dornfest, Deepak Upadhyaya, William John Boardman, Karthik Boinapally
  • Publication number: 20030019858
    Abstract: A ceramic heater for heating a substrate in a semiconductor manufacturing apparatus is disclosed. The ceramic heater, which contains a thermal heat pipe made from Graphfoil embedded in, e.g., AIN, permits <1° C. temperature difference from the center to the edge of a substrate in a substrate holder.
    Type: Application
    Filed: July 27, 2001
    Publication date: January 30, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Charles N. Dornfest, Harold H. Mortensen, Richard J. Palicka
  • Publication number: 20030000645
    Abstract: The present invention provides a unitary apparatus for manufacturing capacitor stacks to integrated circuits, the apparatus including a central wafer transfer chamber having a wafer transfer robot positioned therein and a wafer preparation chamber in communication with the central wafer processing chamber. The apparatus further includes a low thermal budget destabilizing chamber in communication with the central wafer transfer chamber and at least one wafer processing chamber in communication with a central wafer transfer chamber for depositing a dielectric layer on a wafer. The apparatus is configured so that the wafer preparation chamber and the low thermal budget destabilizing chamber cooperatively generate a first dielectric layer on a base electrode of a capacitor stack having minimal interface defects therebetween.
    Type: Application
    Filed: June 27, 2001
    Publication date: January 2, 2003
    Inventor: Charles N. Dornfest
  • Publication number: 20020197793
    Abstract: In one embodiment, the process comprises depositing a CVD metal oxide layer on the substrate at a substrate temperature of less than or equal to about 480° C. and annealing the metal oxide layer. In one aspect, annealing comprises providing a first substrate temperature between abut 600° C. and 900° C., maintaining the first substrate temperature for a time period of between about 0.1 seconds and 30 minutes, providing a second substrate temperature between about 500° C. to 600° C., and maintaining the second substrate temperature for a time period of at least 10 minutes. In another embodiment, the process comprises depositing a first electrode; depositing a CVD metal oxide layer on the first electrode at a substrate temperature of less than or equal to about 480° C.; and depositing a second electrode on the oxide layer. In one aspect the metal oxide layer is annealed prior to deposition of the second electrode.
    Type: Application
    Filed: June 6, 2002
    Publication date: December 26, 2002
    Inventors: Charles N Dornfest, Xiaoliang Jin, Yaxin Wang, Jun Zhao, Yasutoshi Okuno, Akihiko Tsuzumitani, Yoshihiro Mori, Shreyas Kher, Annabel Nickles, Xianzhi (Jerry) Tao
  • Publication number: 20020015855
    Abstract: The present invention provides a system and method for depositing materials onto a substrate and preferably includes physical vapor deposition (PVD) and chemical vapor deposition (CVD) processing. In one aspect, a system is provided that deposits a stack of layers on a substrate comprising one or more nucleation layers, one or more conductive layers compatible with a high-dielectric-constant (HDC) material and one or more HDC layers in various sequences. The HDC material is useful in depositing thin metal-oxide films and ferroelectric films, as well as other films requiring vaporization of precursor liquids. The system allows PVD and CVD to occur within a centralized system to avoid contamination and reduce processing time. Further, different CVD layers can be deposited within the same CVD chamber.
    Type: Application
    Filed: June 15, 2001
    Publication date: February 7, 2002
    Inventors: Talex Sajoto, Elaine Pao, Charles N. Dornfest, Jun Zhao
  • Patent number: 5959409
    Abstract: Non-bonded ceramic protection is provided for metal surfaces in a plasma processing chamber, particularly heated metal electrode surfaces, in a plasma processing chamber, to prevent or inhibit attack of the heated metal surfaces by chemically aggressive species generated in the plasma during processing of materials, without bonding the ceramic material to the metal surface. In accordance with the invention the ceramic protection material comprises a thin cover material which is fitted closely, but not bonded, to the heated metal. This form of ceramic protection is particularly useful for protecting the surfaces of glow discharge electrodes and gas distribution apparatus in plasma process chambers used for processing semiconductor substrates to form integrated circuit structures.
    Type: Grant
    Filed: August 13, 1997
    Date of Patent: September 28, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Charles N. Dornfest, John M. White, Craig A. Bercaw, Hiroyuki Steven Tomosawa, Mark A. Fodor
  • Patent number: 5680013
    Abstract: Non-bonded ceramic protection is provided for metal surfaces in a plasma processing chamber, particularly heated metal electrode surfaces, in a plasma processing chamber, to prevent or inhibit attack of the heated metal surfaces by chemically aggressive species generated in the plasma during processing of materials, without bonding the ceramic material to the metal surface. In accordance with the invention the ceramic protection material comprises a thin cover material which is fitted closely, but not bonded, to the heated metal. This form of ceramic protection is particularly useful for protecting the surfaces of glow discharge electrodes and gas distribution apparatus in plasma process chambers used for processing semiconductor substrates to form integrated circuit structures.
    Type: Grant
    Filed: March 15, 1994
    Date of Patent: October 21, 1997
    Assignee: Applied Materials, Inc.
    Inventors: Charles N. Dornfest, John M. White, Craig A. Bercaw, Hiroyuki Steven Tomosawa, Mark A. Fodor
  • Patent number: 5589003
    Abstract: A shielded substrate support (2) for deposition chambers (6) includes a heated base (8) having a substrate support surface (16) and a sidewall (18). A corrosion-resistant base shield (10) has cover plate (14, 22) and skirt (24) portions and is used to cover and protect the support surface and a part of the sidewall during cleaning operations. The base and the base shield have first and second CTEs, the second CTE being smaller than the first CTE. The base and base shield include complementary locking surfaces sized and positioned so that only when at a higher temperature will the locking surfaces be opposite one another to prevent removal of the base shield from the base. This eliminates the need for mechanical locking elements, such as threads, pins or twist locks, which increase the cost and can be a source of particle contamination.
    Type: Grant
    Filed: February 9, 1996
    Date of Patent: December 31, 1996
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Frank P. Chang, Charles N. Dornfest