Patents by Inventor Charles R. Mace

Charles R. Mace has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240001265
    Abstract: A microfluidic device includes a first layer of a porous material with pores having a first average pore size and a liquid-receiving area through which a liquid sample is received into the microfluidic device. A second layer of another porous material, with pores of a second average pore size, is stacked below the first layer and has a channel with a starting end positioned at least in part in an overlapping manner with the liquid-receiving area. The channel has a terminating end extending laterally at a predetermined wicking distance from the starting end. The first average pore size and the second average pore size cause a wicking effect in which at least some of the liquid sample flows along the channel at least a portion of the wicking distance between the starting end and the terminating end.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Inventors: Charles R. Mace, Syrena C. Fernandes, Samuel B. Berry
  • Patent number: 11772017
    Abstract: A microfluidic device includes a first layer of a porous material with pores having a first average pore size and a liquid-receiving area through which a liquid sample is received into the microfluidic device. A second layer of another porous material, with pores of a second average pore size, is stacked below the first layer and has a channel with a starting end positioned at least in part in an overlapping manner with the liquid-receiving area. The channel has a terminating end extending laterally at a predetermined wicking distance from the starting end. The first average pore size and the second average pore size cause a wicking effect in which at least some of the liquid sample flows along the channel at least a portion of the wicking distance between the starting end and the terminating end.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: October 3, 2023
    Assignee: Trustee of Tufts College
    Inventors: Charles R. Mace, Syrena C. Fernandes, Samuel B. Berry
  • Publication number: 20230081694
    Abstract: Disclosed herein are articles and methods for blood separation. For example, inventive articles and methods that remove red blood cells from blood samples are described.
    Type: Application
    Filed: January 29, 2021
    Publication date: March 16, 2023
    Applicant: Trustees of Tufts College
    Inventors: Charles R. Mace, Keith Baillargeon, Jessica C. Brooks
  • Publication number: 20210268500
    Abstract: Articles and methods involving fluidic devices are generally provided. In some embodiments, a fluidic device comprises a first layer comprising first and second regions that are disconnected from each other in the first layer and a second layer comprising a channel in fluidic communication with the first and second regions. The device may also comprise a third layer comprising a channel in fluidic communication with the first and second regions. One or more portions of a channel and/or one or more reagents may comprise reagent. In some embodiments, a method comprises flowing two or more fluid samples towards each other through a channel. The fluids may meet at an interface and/or may react at an interface.
    Type: Application
    Filed: June 19, 2019
    Publication date: September 2, 2021
    Applicant: Trustees of Tufts College
    Inventors: Daniel J. Wilson, Charles R. Mace
  • Publication number: 20210263027
    Abstract: Articles and methods involving fluidic devices are generally provided. In some embodiments, a fluidic device comprises a first layer comprising a central region in fluidic communication with an environment external to the fluidic device. The first layer may also comprise a first channel and a second channel in fluidic communication with the central region and extending radially outwards therefrom. The first and second channels may comprises first and second sample regions from which first and second samples can be removed from the fluidic device. In some embodiments, a fluidic device comprises a first layer and a second, filtration layer configured to separate blood cells from plasma positioned between the environment external to the fluidic device and the first layer.
    Type: Application
    Filed: June 19, 2019
    Publication date: August 26, 2021
    Applicant: Trustees of Tufts College
    Inventors: Charles R. Mace, Jessica C. Brooks, Syrena C. Fernandes, Keith Baillargeon
  • Publication number: 20200391139
    Abstract: A microfluidic device includes a first layer of a porous material with pores having a first average pore size and a liquid-receiving area through which a liquid sample is received into the microfluidic device. A second layer of another porous material, with pores of a second average pore size, is stacked below the first layer and has a channel with a starting end positioned at least in part in an overlapping manner with the liquid-receiving area. The channel has a terminating end extending laterally at a predetermined wicking distance from the starting end. The first average pore size and the second average pore size cause a wicking effect in which at least some of the liquid sample flows along the channel at least a portion of the wicking distance between the starting end and the terminating end.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventors: Charles R. Mace, Syrena C. Fernandes, Samuel B. Berry
  • Patent number: 10758846
    Abstract: A microfluidic device includes a first layer of a porous material with pores having a first average pore size and a liquid-receiving area through which a liquid sample is received into the microfluidic device. A second layer of another porous material, with pores of a second average pore size, is stacked below the first layer and has a channel with a starting end positioned at least in part in an overlapping manner with the liquid-receiving area. The channel has a terminating end extending laterally at a predetermined wicking distance from the starting end. The first average pore size and the second average pore size cause a wicking effect in which at least some of the liquid sample flows along the channel at least a portion of the wicking distance between the starting end and the terminating end.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: September 1, 2020
    Assignee: Trustees of Tufts College
    Inventors: Charles R. Mace, Syrena C. Fernandes, Samuel B. Berry
  • Patent number: 10732167
    Abstract: A multi-phase system includes a phase-separated solution comprising at least two phases, each phase having a phase component selected from the group consisting of a polymer, a surfactant and combinations thereof, wherein at least one phase comprises a polymer, wherein the phases, taken together, represent a density gradient. Novel two-phase, three-phase, four-phase, five-phase, or six-phase systems are disclosed. Using the disclosed multi-phase polymer systems, particles, or other analyte of interest can be separated based on their different densities or affinities.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: August 4, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Charles R. Mace, Ozge Akbulut Halatci, Ashok A. Kumar, Nathan D. Shapiro, George M. Whitesides
  • Publication number: 20200129886
    Abstract: A method is directed to separating contaminants from mammalian cells in an aqueous multiphase system, and includes loading a container with a liquid having a top liquid phase and a bottom liquid phase. A cover medium is inserted in the container with a mixture of cultured mammalian cells and contaminants. The container is incubated and centrifuged for respective periods of time. In response to the centrifuging, the cells are separated from the contaminants in accordance with the respective density of the cells, the contaminants, and each liquid phase, resulting in the cells being located at a liquid-to-liquid interface between the top liquid phase and the bottom liquid phase and the contaminants being located at the bottom of the container.
    Type: Application
    Filed: July 3, 2018
    Publication date: April 30, 2020
    Inventors: Charles R. Mace, Christopher Luby
  • Patent number: 10436768
    Abstract: The disclosed methods use a multi-phase system to separate samples according to the density of an analyte of interest. The method uses a multi-phase system that comprises two or more phase-separated solutions and a phase component such as a surfactant or polymer. The density of the analyte of interest differs from the densities of the rest of the sample. The density of the analyte of interest is substantially the same as one or more phases. Thus, when the sample is introduced to the multi-phase system, the analyte of interest migrates to the phase having the same density as the analyte of interest, passing through one or more phases sequentially.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: October 8, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Charles R. Mace, Ashok A. Kumar, Dyann F. Wirth, George M. Whitesides
  • Publication number: 20180318732
    Abstract: A microfluidic device includes a first layer of a porous material with pores having a first average pore size and a liquid-receiving area through which a liquid sample is received into the microfluidic device. A second layer of another porous material, with pores of a second average pore size, is stacked below the first layer and has a channel with a starting end positioned at least in part in an overlapping manner with the liquid-receiving area. The channel has a terminating end extending laterally at a predetermined wicking distance from the starting end. The first average pore size and the second average pore size cause a wicking effect in which at least some of the liquid sample flows along the channel at least a portion of the wicking distance between the starting end and the terminating end.
    Type: Application
    Filed: July 12, 2018
    Publication date: November 8, 2018
    Inventors: Charles R. Mace, Syrena C. Fernandes, Samuel B. Berry
  • Publication number: 20180155666
    Abstract: A cultureware system is directed to maintaining viability of mammalian cells, and includes a disposable holding container having a cell receiver with a cell-receiving surface. The cell receiver consists of a cell-adhesion inducement material including a polystyrene material and a glass material. The system further includes a polytetrafluoroethylene (PTFE) coating lining the cell-adhesion inducement material of the cell-receiving surface, and a culture of adherent mammalian cells located within the cell receiver on the PTFE coating. In response to attachment interaction between the mammalian cells and the PTFE coating, a decreased cell adhesion results in a cell viability rate of at least about 60% to about 70% over a 72-hour culturing period, the cell viability rate being under 90% over the 72-hour culturing period if, in the absence of the PTFE coating, the mammalian cells are located directly on the cell-adhesion inducement material.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 7, 2018
    Inventors: Daniel J. Wilson, Irene Lui, Charles R. Mace
  • Publication number: 20180080922
    Abstract: The disclosed methods use a multi-phase system to separate samples according to the density of an analyte of interest. The method uses a multi-phase system that comprises two or more phase-separated solutions and a phase component such as a surfactant or polymer. The density of the analyte of interest differs from the densities of the rest of the sample. The density of the analyte of interest is substantially the same as one or more phases. Thus, when the sample is introduced to the multi-phase system, the analyte of interest migrates to the phase having the same density as the analyte of interest, passing through one or more phases sequentially.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 22, 2018
    Inventors: Charles R. MACE, Ashok A. KUMAR, Dyann F. WIRTH, George M. WHITESIDES
  • Patent number: 9857353
    Abstract: A kit for separating a sample comprising one or more biological analytes of interest using a multi-phase system comprising: a) two or more phase components selected from the group consisting of a polymer, a surfactant, and combinations thereof; b) optionally a tag molecule capable of binding the one or more biological analytes of interest; and c) instructions for: (i) combining the two or more phase-separated solutions with a common solvent to create a multi-phase system; (ii) optionally, combining the biological analyte of interest and tag molecule, and (iii) separating the biological analyte of interest from the sample.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: January 2, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Charles R. Mace, Ashok A. Kumar, Dyann F. Wirth, George M. Whitesides
  • Publication number: 20170370709
    Abstract: An imaging system for a biological sample includes a sample container having at least one biological cell that is in contact with an interface surface of a container interface. The imaging system also includes illuminating optics that output a light beam aligned with a sample plane, the light beam being oriented horizontally along a transverse (XY) plane and illuminating the biological cell vertically along an axial (XZ) plane. The imaging system further includes imaging optics aligned horizontally along the transverse (XY) plane with the interface in the sample container, the imaging optics being configured to detect along the axial (XZ) plane a magnified image of a measurable contact angle between the biological cell and the interface surface. The measurable contact angle changes over time and is indicative of biological adhesion between the biological cell and another biological cell.
    Type: Application
    Filed: June 8, 2016
    Publication date: December 28, 2017
    Inventors: Charles R. Mace, Jenna A. Walz
  • Publication number: 20170322196
    Abstract: A multi-phase system includes a phase-separated solution comprising at least two phases, each phase having a phase component selected from the group consisting of a polymer, a surfactant and combinations thereof, wherein at least one phase comprises a polymer, wherein the phases, taken together, represent a density gradient. Novel two-phase, three-phase, four-phase, five-phase, or six-phase systems are disclosed. Using the disclosed multi-phase polymer systems, particles, or other analyte of interest can be separated based on their different densities or affinities.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Inventors: Charles R. MACE, Ozge Akbulut HALATCI, Ashok A. KUMAR, Nathan D. SHAPIRO, George M. WHITESIDES
  • Patent number: 9714934
    Abstract: A multi-phase system includes a phase-separated solution comprising at least two phases, each phase having a phase component selected from the group consisting of a polymer, a surfactant and combinations thereof, wherein at least one phase comprises a polymer, wherein the phases, taken together, represent a density gradient. Novel two-phase, three-phase, four-phase, five-phase, or six-phase systems are disclosed. Using the disclosed multi-phase polymer systems, particles, or other analyte of interest can be separated based on their different densities or affinities.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: July 25, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Charles R. Mace, Ozge Akbulut Halatci, Ashok A. Kumar, Nathan D. Shapiro, George M. Whitesides
  • Patent number: 9678088
    Abstract: An aqueous multi-phase system for diagnosis of sickle cell disease is described, including two or more phase-separated phases including: a first aqueous phase including a first phase component and having a first density between about 1.025 g/cm3 and about 1.095 g/cm3; and a second aqueous phase including a second phase component and having a second density between about 1.100 g/cm3 and about 1.140 g/cm3; wherein the first density is lower than the second density; and each of the first and second phase components include at least one polymer.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: June 13, 2017
    Assignees: President and Fellows of Harvard College, Children's Medical Center Corporation, The Brigham and Women's Hospital, Inc.
    Inventors: George M. Whitesides, Ashok A. Kumar, Jonathan W. Hennek, Caeul Lim, Yovany Moreno, Charles R. Mace, Manoj T. Duraisingh, Matthew R. Patton, Si-yi Ryan Lee, Gaetana D'Alesio-Spina, Carlo Brugnara, Thomas P. Stossel
  • Patent number: 9410953
    Abstract: The present invention relates to a formulations and methods for coupling a reactant (or probe precursor) to a functionalized surface for purposes of forming an arrayed sensor. This method includes the steps of: providing a surface having a reactive functional group; and introducing onto the surface, at a plurality of discrete locations, two or more compositions of the invention, which include a different reactant (probe precursor) and a non-nucleophilic additive, wherein such introduction is carried out under conditions effective to allow for covalent binding of the reactant to the surface via the reactive functional group. This results in a probe-functionalized array that substantially overcomes the problem of surface morphological anomalies on the array surface. Use of the resulting arrays in various detection systems is also encompassed.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: August 9, 2016
    Assignee: University of Rochester
    Inventors: Charles R. Mace, Amrita R. Yadav, Benjamin L. Miller
  • Publication number: 20160124001
    Abstract: Multi-phase systems and kits using these multiphase systems are described. The Multi-phase system described herein comprises multiple phase-separated phases each comprises a phase component and the phases, taken together, represent a density gradient. The kit comprising the multiphase system as described herein may be used to separate biological analytes such as cells. Non-limiting examples of the biological analytes include normal erythrocyte with hemoglobin Hb AA, Hb CC, and Hb AS, sickle cell erythrocyte with hemoglobin Hb SS and Hb SC, reticulocyte, iron deficiency anemia red blood cell, ?-thalessemia trait red blood cell, and normal red blood cell.
    Type: Application
    Filed: April 28, 2014
    Publication date: May 5, 2016
    Inventors: George M. WHITESIDES, Ashok A. KUMAR, Jonathan W. HENNEK, Caeul LIM, Yovany MORENO, Charles R. MACE, Manoj T. DURAISINGH, Matthew R. PATTON, Ryan LEE, Gaetana D' ALESIO-SPINA, Carlo BRUGNARA