Patents by Inventor Charles S. Jordan
Charles S. Jordan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250239362Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.Type: ApplicationFiled: January 17, 2025Publication date: July 24, 2025Inventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
-
Publication number: 20250239374Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.Type: ApplicationFiled: January 17, 2025Publication date: July 24, 2025Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
-
Patent number: 12269172Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot includes a drive system configured to move the telepresence robot; a control system configured to control the drive system to drive the telepresence robot around a work area; an object detection system configured to determine that a first object encountered by the telepresence robot is a human; and a social path component configured to: determine a first lockout zone having a first radius around the human and a first comfort zone having a second radius around the human, the second radius being larger than the first radius; and instruct the control system to cause the telepresence robot to: avoid traveling through the first lockout zone; move at a first maximum speed within the first comfort zone; and move at a second maximum speed outside of the first comfort zone, wherein the second maximum speed is greater than the first maximum speed.Type: GrantFiled: May 3, 2024Date of Patent: April 8, 2025Assignees: Teladoc Health, Inc., iRobot CorporationInventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
-
Publication number: 20250071236Abstract: A telepresence device may relay video, audio, and/or measurement data to a user operating a control device. A user interface may permit the user to quickly view and/or understand temporally and/or spatially disparate information. The telepresence device may pre-gather looped video of spatially disparate areas in an environment. A temporal control mechanism may start video playback at a desired point in a current or historical video segment. Notations may be associated with time spans in a video and recalled by capturing an image similar to a frame in the time span of the video. An area of interest may be selected and video containing the area of interest may be automatically found. Situational data may be recorded and used to recall video segments of interest. The telepresence device may synchronize video playback and movement. A series of videos may be recorded at predetermined time intervals to capture visually trending information.Type: ApplicationFiled: February 19, 2024Publication date: February 27, 2025Inventors: Marco Pinter, Charles S. Jordan, Daniel Sanchez, Kevin Hanrahan, Kelton Temby, Christopher Lambrecht
-
Publication number: 20250054644Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.Type: ApplicationFiled: October 21, 2024Publication date: February 13, 2025Applicants: Teladoc Health, Inc., iRobot CorporationInventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
-
Patent number: 12165776Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.Type: GrantFiled: August 2, 2023Date of Patent: December 10, 2024Assignees: TELADOC HEALTH, INC., IROBOT CORPORATIONInventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
-
Patent number: 12138808Abstract: A robot system with a robot that has a camera and a remote control station that can connect to the robot. The connection can include a plurality of privileges. The system further includes a server that controls which privileges are provided to the remote control station. The privileges may include the ability to control the robot, joint in a multi-cast session and the reception of audio/video from the robot. The privileges can be established and edited through a manager control station. The server may contain a database that defines groups of remote control station that can be connected to groups of robots. The database can be edited to vary the stations and robots within a group. The system may also allow for connectivity between a remote control station at a user programmable time window.Type: GrantFiled: December 28, 2020Date of Patent: November 12, 2024Assignee: TELADOC HEALTH, INC.Inventors: John Cody Herzog, Blair Whitney, Yulun Wang, Charles S. Jordan, Marco Pinter
-
Publication number: 20240312622Abstract: A tele-presence system that includes a cart. The cart includes a robot face that has a robot monitor, a robot camera, a robot speaker, a robot microphone, and an overhead camera. The system also includes a remote station that is coupled to the robot face and the overhead camera. The remote station includes a station monitor, a station camera, a station speaker and a station microphone. The remote station can display video images captured by the robot camera and/or overhead camera. By way of example, the cart can be used in an operating room, wherein the overhead camera can be placed in a sterile field and the robot face can be used in a non-sterile field. The user at the remote station can conduct a teleconference through the robot face and also obtain a view of a medical procedure through the overhead camera.Type: ApplicationFiled: October 23, 2023Publication date: September 19, 2024Inventors: David Stuart, Daniel Steven Sanchez, Fuji Lai, Kevin Hanrahan, Charles S. Jordan, David Roe, James Rosenthal, Amante Mangaser, Blair Whitney, Derek Walters
-
Publication number: 20240286288Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot includes a drive system configured to move the telepresence robot; a control system configured to control the drive system to drive the telepresence robot around a work area; an object detection system configured to determine that a first object encountered by the telepresence robot is a human; and a social path component configured to: determine a first lockout zone having a first radius around the human and a first comfort zone having a second radius around the human, the second radius being larger than the first radius; and instruct the control system to cause the telepresence robot to: avoid traveling through the first lockout zone; move at a first maximum speed within the first comfort zone; and move at a second maximum speed outside of the first comfort zone, wherein the second maximum speed is greater than the first maximum speed.Type: ApplicationFiled: May 3, 2024Publication date: August 29, 2024Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
-
Patent number: 12014817Abstract: Disclosed herein are various embodiments of systems and methods for visualizing, analyzing, and managing telepresence devices operating in a telepresence network of healthcare facilities. The visualization and management system for telepresence devices may display a first viewing level that includes a geographical representation of the location of various telepresence devices. A user may selectively view a global view of all telepresence devices, telepresence devices within a particular region, and/or the details of a particular telepresence device. A user may also access a viewing level of a network of healthcare facilities. The user may view, analyze, and/or manage the healthcare network, telepresence device network, individual telepresence devices, connection rules, and/or other aspects of the healthcare network using the geographical visualization and management tool described herein.Type: GrantFiled: December 20, 2021Date of Patent: June 18, 2024Assignee: TELADOC HEALTH, INC.Inventors: Scott Ross, Kelton Temby, Jonathan Southard, Dan Habecker, Michael Chan, Timothy C. Wright, Charles S. Jordan, Joshua A. Bouganim
-
Patent number: 11981034Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.Type: GrantFiled: March 22, 2023Date of Patent: May 14, 2024Assignees: TELADOC HEALTH, INC., IROBOT CORPORATIONInventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
-
Publication number: 20240136033Abstract: Automatically generating a structured medical note during a remote medical consultation using machine learning. A provider tele-presence device may receive audio from a medical provider. A medical documentation server may be coupled to the network. A machine learning network receives audio data from the provider tele-presence device, the machine learning network generating a structured medical note based on the received audio data, and wherein the structured medical note is stored in the medical documentation server in association with an identity of a patient.Type: ApplicationFiled: January 1, 2024Publication date: April 25, 2024Inventors: Marco Pinter, Charles S. Jordan, Yulun Wang, Ole Eichhorn
-
Publication number: 20240087738Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.Type: ApplicationFiled: November 17, 2023Publication date: March 14, 2024Inventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
-
Patent number: 11910128Abstract: A telepresence device may relay video, audio, and/or measurement data to a user operating a control device. A user interface may permit the user to quickly view and/or understand temporally and/or spatially disparate information. The telepresence device may pre-gather looped video of spatially disparate areas in an environment. A temporal control mechanism may start video playback at a desired point hi a current or historical video segment. Notations may be associated with time spans in a video and recalled by capturing an image similar to a frame in the time span of the video. An area of interest may be selected and video containing the area of interest may be automatically found. Situational data may be recorded and used to recall video segments of interest. The telepresence device may synchronize video playback and movement. A series of videos may be recorded at predetermined time intervals to capture visually trending information.Type: GrantFiled: January 13, 2021Date of Patent: February 20, 2024Assignee: TELADOC HEALTH, INC.Inventors: Marco Pinter, Charles S. Jordan, Daniel Sanchez, Kevin Hanrahan, Kelton Temby, Christopher Lambrecht
-
Patent number: 11862302Abstract: Automatically generating a structured medical note during a remote medical consultation using machine learning. A provider tele-presence device may receive audio from a medical provider. A medical documentation server may be coupled to the network. A machine learning network receives audio data from the provider tele-presence device, the machine learning network generating a structured medical note based on the received audio data, and wherein the structured medical note is stored in the medical documentation server in association with an identity of a patient.Type: GrantFiled: April 24, 2018Date of Patent: January 2, 2024Assignee: TELADOC HEALTH, INC.Inventors: Marco Pinter, Charles S. Jordan, Yulun Wang, Ole Eichhorn
-
Publication number: 20230402194Abstract: A telemedicine system including a cart that allows for two-way audio/video conferencing between patients or local care providers and remote care providers or family members. The cart employs a modular design that allows its capabilities to be expanded to meet the needs of particular telemedicine applications. In addition, the cart provides thermal imaging and a user interface that allows local care provers to access various capabilities of the device while the device is not in session with a remote party.Type: ApplicationFiled: August 28, 2023Publication date: December 14, 2023Inventors: John Celmins, Gary Douville, Daniel Sanchez, Marco Pinter, Charles S. Jordan, Yulun Wang
-
Patent number: 11830618Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.Type: GrantFiled: March 14, 2022Date of Patent: November 28, 2023Assignees: Teladoc Health, Inc., iRobot CorporationInventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
-
Publication number: 20230377761Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.Type: ApplicationFiled: August 2, 2023Publication date: November 23, 2023Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
-
Patent number: 11798683Abstract: A tele-presence system that includes a cart. The cart includes a robot face that has a robot monitor, a robot camera, a robot speaker, a robot microphone, and an overhead camera. The system also includes a remote station that is coupled to the robot face and the overhead camera. The remote station includes a station monitor, a station camera, a station speaker and a station microphone. The remote station can display video images captured by the robot camera and/or overhead camera. By way of example, the cart can be used in an operating room, wherein the overhead camera can be placed in a sterile field and the robot face can be used in a non-sterile field. The user at the remote station can conduct a teleconference through the robot face and also obtain a view of a medical procedure through the overhead camera.Type: GrantFiled: November 11, 2020Date of Patent: October 24, 2023Assignee: TELADOC HEALTH, INC.Inventors: David Stuart, Daniel Steven Sanchez, Fuji Lai, Kevin Hanrahan, Charles S. Jordan, David Roe, James Rosenthal, Amante Mangaser, Blair Whitney, Derek Walters
-
Patent number: 11787060Abstract: A robot system that includes a remote station and a robot face. The robot face includes a camera that is coupled to a monitor of the remote station and a monitor that is coupled to a camera of the remote station. The robot face and remote station also have speakers and microphones that are coupled together. The robot face may be coupled to a boom. The boom can extend from the ceiling of a medical facility. Alternatively, the robot face may be attached to a medical table with an attachment mechanism. The robot face and remote station allows medical personnel to provide medical consultation through the system.Type: GrantFiled: December 28, 2020Date of Patent: October 17, 2023Assignee: TELADOC HEALTH, INC.Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter, Daniel Steven Sanchez, Kevin Hanrahan