Patents by Inventor Charles Timchalk

Charles Timchalk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140249102
    Abstract: A topical applicator composition and process are described that decorporate radionuclides from radiologically-contaminated dermal surfaces and that further promote healing. The topical applicator includes a decorporation agent mixed with a plasticizing agent that forms a covering when applied to the dermal surface that decorporates radionuclides and minimizes their systemic migration. The topical applicator formulations can be delivered in conjunction with bandages and other application dressings.
    Type: Application
    Filed: June 30, 2011
    Publication date: September 4, 2014
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Tatiana G. Levitskaia, Karla D. Thrall, James M. Peterson, Glen E. Fryxell, Charles A. Timchalk, Barbara J. Tarasevich
  • Patent number: 8679458
    Abstract: A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: March 25, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Wassana Yantasee, Maryin G. Warner, Cynthia L. Warner, Raymond S. Addleman, Glen E. Fryxell, Charles Timchalk, Mychailo B. Toloczko
  • Publication number: 20110263924
    Abstract: A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.
    Type: Application
    Filed: November 7, 2007
    Publication date: October 27, 2011
    Inventors: Wassana Yantasee, Maryin G. Warner, Cynthia L. Warner, Raymond S. Addleman, Glen E. Fryxell, Charles Timchalk, Mychailo B. Toloczko
  • Publication number: 20110110985
    Abstract: A therapy agent is disclosed that is made up of a functionalized nanomaterial that provides solutions to current problems facing the field of chelation therapies and dialysis of metals, radionuclides, and metabolic wastes. Through the coupling of groups tailored to selectively capture specific toxins and rigid porous backbone structures (e.g., mesoporous silica and mesoporous carbon), suitable materials that are highly effective and fast at capturing toxins (metals, radionuclides, and metabolic wastes) in the presence of competing ions and proteins. These materials may be embodied in a variety of treatment devices which allow for treatment and removal of these target materials through a variety of methodologies including oral, dermal and dialysis pathways.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Glen E. Fryxell, Charles Timchalk, Raymond S. Addleman, Wassana Yantasee
  • Publication number: 20090288962
    Abstract: A mercury-free, electrochemical sensor is described that includes a self-assembled monolayer on a mesoporous support (SAMMS) composite and a fluoropolymer component that is deposited on a measurement surface. The SAMMS component provides outstanding metal preconcentration. The fluoropolymer component acts as an antifouling binder. The sensor can detect various metals at a low detection level in the presence of fouling agents and without sample pretreatment. The sensor is also able to detect mixtures of metals simultaneously with excellent single and inter-electrode reproducibility. Service lifetimes are excellent.
    Type: Application
    Filed: April 21, 2009
    Publication date: November 26, 2009
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wassana Yantasee, Glen E. Fryxell, Raymond S. Addleman, Yuehe Lin, Charles Timchalk
  • Patent number: 6699384
    Abstract: Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating “plug and play” concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: March 2, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Yuehe Lin, Wendy D. Bennett, Charles Timchalk, Karla D. Thrall