Patents by Inventor Charles Wheatley

Charles Wheatley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8514764
    Abstract: This disclosure is directed to a repeater and base station control device implemented in a wireless communication system. The repeater includes a control unit capable of detecting signals sent from various base stations in the wireless communication system. In accordance with this disclosure, the repeater identifies a set of base stations that it can detect, and then sends information indicative of the set of base stations that the repeater can detect to a specific base station that gets repeated by the repeater. In this manner, the repeater can be used to help assess network topology. The base station control device receives the information from the base station and can use the information to update a neighbor list.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: August 20, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Kenneth Baker, Charles Wheatley, Daniel Willis, Leonid Sheynblat
  • Patent number: 7831263
    Abstract: A repeater is disclosed with position location capability. The repeater includes a position location device for determining the location of the repeater. The position location device uses radio-location signals received independently or by a receiver to determine the location of the repeater. The location of the repeater can be used to update a base station almanac.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: November 9, 2010
    Assignee: QUALCOMM Incorporated
    Inventors: Leonid Sheynblat, Kenneth Baker, Charles Wheatley
  • Patent number: 7457584
    Abstract: A repeater of a wireless communication system includes a positioning unit, such as a GPS receiver, in order to calculate the location of the repeater. In addition, various techniques are described that exploit the positioning information generated by the repeater in order to improve the wireless communication system.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: November 25, 2008
    Assignee: QUALCOMM Incorporated
    Inventors: Kenneth Baker, Charles Wheatley, Daniel Willis, Leonid Sheynblat
  • Publication number: 20080117835
    Abstract: Schemes to time-align transmissions from multiple base stations to a terminal. To achieve time-alignment, differences between the arrival times of transmissions from the base stations, as observed at the terminal, are determined and provided to the system and used to adjust the timing at the base stations such that terminal-specific radio frames arrive at the terminal within a particular time window. In one scheme, a time difference between two base stations is partitioned into a frame-level time difference and a chip-level time difference. Whenever requested to perform and report time difference measurements, the terminal measures the chip-level timing for each candidate base station relative to a reference base station. Additionally, the terminal also measures the frame-level timing and includes this information in the time difference measurement only if required. Otherwise, the terminal sets the frame-level part to a predetermined value (e.g., zero).
    Type: Application
    Filed: January 24, 2008
    Publication date: May 22, 2008
    Applicant: QUALCOMM INCORPORATED
    Inventors: Francesco Grilli, Charles Wheatley, Serge Willenegger, Parvathanathan Subrahmanya
  • Publication number: 20080062906
    Abstract: This disclosure is directed to a repeater and base station control device implemented in a wireless communication system. The repeater includes a control unit capable of detecting signals sent from various base stations in the wireless communication system. In accordance with this disclosure, the repeater identifies a set of base stations that it can detect, and then sends information indicative of the set of base stations that the repeater can detect to a specific base station that gets repeated by the repeater. In this manner, the repeater can be used to help assess network topology. The base station control device receives the information from the base station and can use the information to update a neighbor list.
    Type: Application
    Filed: April 30, 2004
    Publication date: March 13, 2008
    Inventors: Kenneth Baker, Charles Wheatley, Daniel Willis, Leonid Sheynblat
  • Publication number: 20070193145
    Abstract: An outdoor deck surface unit comprising a substrate support member and a plurality of separate boards, with the plurality of boards being unitized by being secured to the substrate in a desired pattern. The deck surface unit is sufficiently large that an entire deck surface is created relatively quickly, but being sufficiently small that a deck surface unit is capable of being readily lifted, moved, placed and handled by a single individual. The substrate support member comprises plastic coated polyester and is stapled to the separate boards.
    Type: Application
    Filed: November 30, 2006
    Publication date: August 23, 2007
    Inventor: Charles Wheatley
  • Publication number: 20070066320
    Abstract: In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
    Type: Application
    Filed: September 29, 2006
    Publication date: March 22, 2007
    Inventors: Roberto Padovani, Paul Bender, Peter Black, Matthew Grob, Jurg Hinderling, Nagabhushana Sindhushayana, Charles Wheatley
  • Publication number: 20070066235
    Abstract: In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
    Type: Application
    Filed: October 2, 2006
    Publication date: March 22, 2007
    Inventors: Roberto Padovani, Paul Bender, Peter Black, Matthew Grob, Jurg Hinderling, Nagabhushana Sindhushayana, Charles Wheatley,
  • Publication number: 20070025269
    Abstract: In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
    Type: Application
    Filed: September 29, 2006
    Publication date: February 1, 2007
    Inventors: Roberto Padovani, Paul Bender, Peter Black, Matthew Grob, Jurg Hinderling, Nagabhushana Sindhushayana, Charles Wheatley
  • Publication number: 20070025267
    Abstract: In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
    Type: Application
    Filed: September 29, 2006
    Publication date: February 1, 2007
    Inventors: Roberto Padovani, Paul Bender, Peter Black, Matthew Grob, Jurg Hinderling, Nagabhushana Sindhushayana, Charles Wheatley
  • Publication number: 20070025260
    Abstract: In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
    Type: Application
    Filed: October 2, 2006
    Publication date: February 1, 2007
    Inventors: Roberto Padovani, Paul Bender, Peter Black, Matthew Grob, Jurg Hinderling, Nagabhushana Sindhushayana, Charles Wheatley
  • Publication number: 20070025268
    Abstract: In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
    Type: Application
    Filed: September 29, 2006
    Publication date: February 1, 2007
    Inventors: Roberto Padovani, Paul Bender, Peter Black, Matthew Grob, Jurg Hinderling, Nagabhushana Sindhushayana, Charles Wheatley
  • Publication number: 20070025319
    Abstract: In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
    Type: Application
    Filed: September 29, 2006
    Publication date: February 1, 2007
    Inventors: Roberto Padovani, Paul Bender, Peter Black, Matthew Grob, Jurg Hinderling, Nagabhushana Sindhushayana, Charles Wheatley
  • Publication number: 20070025321
    Abstract: In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
    Type: Application
    Filed: October 2, 2006
    Publication date: February 1, 2007
    Inventors: Roberto Padovani, Paul Bender, Peter Black, Matthew Grob, Jurg Hinderling, Nagabhushana Sindhushayana, Charles Wheatley
  • Publication number: 20070025320
    Abstract: In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
    Type: Application
    Filed: September 29, 2006
    Publication date: February 1, 2007
    Inventors: Roberto Padovani, Paul Bender, Peter Black, Matthew Grob, Jurg Hinderling, Nagabhushana Sindhushayana, Charles Wheatley
  • Publication number: 20070019608
    Abstract: In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
    Type: Application
    Filed: September 29, 2006
    Publication date: January 25, 2007
    Inventors: Roberto Padovani, Paul Bender, Peter Black, Matthew Grob, Jurg Hinderling, Nagabhushana Sindhushayana, Charles Wheatley
  • Publication number: 20070019567
    Abstract: In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
    Type: Application
    Filed: September 29, 2006
    Publication date: January 25, 2007
    Inventors: Roberto Padovani, Paul Bender, Peter Black, Matthew Grob, Jurg Hinderling, Nagabhushana Sindhushayana, Charles Wheatley
  • Publication number: 20060280160
    Abstract: In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
    Type: Application
    Filed: August 3, 2006
    Publication date: December 14, 2006
    Inventors: Roberto Padovani, Paul Bender, Peter Black, Matthew Grob, Jurg Hinderling, Nagabhushana Sindhushayana, Charles Wheatley
  • Publication number: 20060094460
    Abstract: A method and apparatus for controlling transmission power levels in a mobile communication system. The method provides for a closed-loop power control method. A mobile station provides information on the quality of the signal received from the base station, and the base station responds by adjusting the power allocated to that user in a shared base station signal. The transmission power is adjusted initially by a large increment and then ramped down at an increasingly decreasing rate. The mobile station also provides information to the base station as to its relative velocity and the base station adjusts its transmission power in accordance with this velocity information.
    Type: Application
    Filed: December 6, 2005
    Publication date: May 4, 2006
    Inventors: Edward Tiedemann, Joseph Odenwalder, Charles Wheatley, Roberto Padovani
  • Publication number: 20060088134
    Abstract: A system and method for communicating information signals using spread spectrum communication techniques. PN sequences are constructed that provide orthogonality between the users so that mutual interference will be reduced, allowing higher capacity and better link performance. With orthogonal PN codes, the cross-correlation is zero over a predetermined time interval, resulting in no interference between the orthogonal codes, provided only that the code time frames are time aligned with each other. In an exemplary embodiment, signals are communicated between a cell-site and mobile units using direct sequence spread spectrum communication signals. In the exemplary embodiment, transmit power of mobile unit signals is controlled based on signal power received by the mobile unit and power adjustment commands sent to the mobile unit.
    Type: Application
    Filed: December 7, 2005
    Publication date: April 27, 2006
    Inventors: Klein Gilhousen, Irwin Jacobs, Roberto Padovani, Lindsay Weaver, Charles Wheatley, Andrew Viterbi