Patents by Inventor Charles Whitmer

Charles Whitmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9922307
    Abstract: A semiconductor-transistor-based system and device that are designed to, but are not limited to: electronically outputting electronic-semiconductor-transistor-voltage-level-based-state-machine-assisted-user-menu-selection display associated with electronic-semiconductor-transistor-voltage-level-based-state-machine-assisted collection of user-physiological information, associated with electronic-semiconductor-transistor-voltage-level-based-state-machine-assisted collection of user-conduct information, and associated with electronic-semiconductor-transistor-voltage-level-based-state-machine-assisted obtaining of food-based information. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present disclosure.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: March 20, 2018
    Assignee: Elwha LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Royce A. Levien, Richard T. Lord, Robert W. Lord, Mark A. Malamud, Nathan P. Myhrvold, Elizabeth A. Sweeney, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9919779
    Abstract: A lightweight transport vessel transports compressed natural gas underwater without needing to liquefy the gas for transport.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 20, 2018
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Tom Driscoll, Alexander Galt Hyde, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, David R. Smith, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20180077711
    Abstract: An automatically adjustable radiofrequency link system includes a radiofrequency transmitter configured to transmit a signal at a frequency of transmission within an extremely high frequency (EHF) band. The system further includes a receiving device configured to receive the transmitted signal and provide feedback to a processing circuit communicatively coupled to the transmitter and the receiving device, wherein the feedback is related to the received signal. The processing circuit is configured to determine required signal properties based on the feedback and determine signal loss properties including an effect of atmospheric absorption, as a function of frequency; determine a modification to the transmitted signal using the signal loss properties and the required signal properties; and adjust the frequency of transmission to obtain a desired transmission signal using the modification.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Applicant: Elwha LLC
    Inventors: Jeffrey A. Bowers, Alistair K. Chan, Russell J. Hannigan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Nathan P. Myhrvold, John Brian Pendry, David R. Smith, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood,, JR.
  • Publication number: 20180064335
    Abstract: In one embodiment, a machine-vision enabled fundoscope for retinal analysis includes, but is not limited to, an optical lens arrangement; an image sensor positioned with the optical lens arrangement and configured to convert detected light to retinal image data; computer readable memory; at least one communication interface; and an image processor communicably linked to the image sensor, the computer readable memory, and the at least one communication interface, the image processor programmed to execute operations including at least: obtain the retinal image data from the image sensor; generate output data based on analysis of the retinal image data, the output data requiring less bandwidth for transmission than the retinal image data; and transmit the output data via the at least one communication interface.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 8, 2018
    Applicant: Elwha LLC
    Inventors: Phillip Rutschman, Ehren Brav, Russell Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, 3ric Johanson, Jordin T. Kare, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood, Travis P. Dorschel
  • Publication number: 20180063372
    Abstract: In one embodiment, a device for providing low latency communication of high resolution imagery includes, but is not limited to, a first imaging unit including at least: a first optical arrangement directed at a first field of view; a first image sensor that is positioned with the first optical arrangement and that is configured to convert detected light into first image data; and a first image processor coupled to the first image sensor and configured to execute operations including at least: receive the first image data; process the first image data to generate first output data that requires less bandwidth for communication than the first image data; and transfer the first output data.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 1, 2018
    Applicant: Elwha LLC
    Inventors: Phillip Rutschman, Ehren Brav, Russell Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, 3ric Johanson, Jordin T. Kare, Tony S. Pan, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y.H. Wood, Travis P. Dorschel
  • Publication number: 20180059295
    Abstract: The present disclosure relates to camouflaged systems and related camouflaging methods. The camouflaged systems can include at least one camouflaged object, including but not limited to transmission lines and transmission towers. One or more surfaces of the camouflaged object can be configured to appear like (e.g., match, mimic, simulate, correspond to, or otherwise blend with) an environmental condition, which can include any variety of background environmental landscapes. For example, one or more surfaces of the camouflaged object can be painted, coated, or imparted with a texture such that they reflect light in a way that corresponds to any particular environmental condition.
    Type: Application
    Filed: November 7, 2017
    Publication date: March 1, 2018
    Inventors: Jesse R. Cheatham, III, Geoffrey F. Deane, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, JR.
  • Patent number: 9905217
    Abstract: A noise-canceling device includes a processing circuit configured to detect vibrational noise sound waves near a listener's ear using a vibration sensor, generate a vibrational noise-canceling signal, and control operation of a speaker to provide a desired sound signal and the vibrational noise-canceling signal to at least partially cancel the vibrational noise sound waves.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: February 27, 2018
    Assignee: Elwha LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Richard T. Lord, Robert W. Lord, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9905072
    Abstract: Systems and methods for vending devices having ad-watching as consideration are described. In some implementations, a vending apparatus includes a dispensing portion operable to dispense a product (e.g. electricity) to a user; a communication portion operable to provide a communicable content (e.g. an advertisement) to the user; and a control system operatively coupled to the dispensing portion and the communication portion. The control system receives a signal indicative of a consent by the user to receive or review the communicable content at least partially in exchange for the product, and after receipt of the signal, causes the communication portion to provide the communicable content to the user and causes the dispensing portion to dispense the product to the user. In further implementations, the apparatus may include a monitoring system operable to determine whether the user is receiving or reviewing the communicable content.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: February 27, 2018
    Assignee: Elwha LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Jordin T. Kare, Royce A. Levien, Richard T. Lord, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H Wood
  • Publication number: 20180045862
    Abstract: The present disclosure is directed to systems for tuning nanocube plasmonic resonators and methods for forming tunable plasmonic resonators. A tunable plasmonic resonator system can include a substrate and a nanostructure positioned on a surface of the substrate. The substrate can include a semiconductor material having a carrier density distribution. A junction can be formed between the nanostructure and the substrate forming a Schottky junction. Changing the carrier density distribution of the semiconductor material can change a plasmonic response of the plasmonic resonator.
    Type: Application
    Filed: October 30, 2017
    Publication date: February 15, 2018
    Applicant: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Tom Driscoll, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, David R. Smith, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y.H. Wood
  • Patent number: 9886834
    Abstract: A system embodiment includes, but is not limited to, a device, including: a deformable substrate configured to conform to a skin surface; a sensor assembly including a proximity sensor configured to generate one or more sense signals associated with a proximity of an environmental object relative to the body portion; circuitry configured to receive the one or more sense signals; and a reporting device configured to generate one or more communication signals associated with one or more of the environmental object or the proximity of the environmental object relative to the body portion responsive to instruction by the circuitry; and an external device communicatively coupled with the device, the external device configured to at least one of receive the one or more communication signals from the device or transmit one or more communication signals associated with environmental object characteristics to the device.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: February 6, 2018
    Assignee: ELWHA LLC
    Inventors: Roderick A. Hyde, Jordin T. Kare, Eric C. Leuthardt, Mark A. Malamud, Tony S. Pan, Elizabeth A. Sweeney, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Publication number: 20180031171
    Abstract: A thermal insulator includes a plurality of layers. At least some of the layers include phononic crystals having a phononic bandgap, wherein heat transporting phonons within a selected range of frequencies are substantially blocked by each phononic crystal layer. The plurality of layers thermally isolate a first region from a second region, wherein the first region is at one end of the plurality of layers and the second region is at the other end of the plurality of layers.
    Type: Application
    Filed: September 25, 2017
    Publication date: February 1, 2018
    Applicant: Elwha LLC
    Inventors: Paul G. Allen, Jeffrey A. Bowers, Kenneth G. Caldeira, William D. Duncan, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K.Y. Jung, Jordin T. Kare, John Latham, Eric C. Leuthardt, Nathan P. Myhrvold, Thomas J. Nugent,, Jr., Stephen H. Salter, Clarence T. Tegreene, David B. Tuckerman, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood,, Jr., Victoria Y.H. Wood
  • Publication number: 20180033285
    Abstract: Systems are described for analyzing an environment. A system embodiment includes, but is not limited to, a plurality of sensors, each sensor configured for positioning proximate a respective environmental object, each sensor configured to generate output signals corresponding to a proximity of a human appendage with the sensor or an impact between the human appendage and the respective environmental object; a remote device configured to distinctly identify each of the plurality of sensors and to receive the output signals from each sensor; a processor configured to process the output signals to provide an indication of at least one of the proximity of the human appendage with the sensor or when an impact between the human appendage and the respective environmental object occurs based on a threshold value being exceeded; and an output reporter configured to generate communication signals responsive to instruction by the processor.
    Type: Application
    Filed: August 1, 2017
    Publication date: February 1, 2018
    Inventors: Roderick A. Hyde, Jordin T. Kare, Eric C. Leuthardt, Mark A. Malamud, Tony S. Pan, Elizabeth A. Sweeney, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, JR.
  • Patent number: 9881477
    Abstract: An embodiment of a device includes a sensor and a communicator. The sensor is configured to be attached to a body portion of a subject, to sense an object, and to generate information related to the object. The communicator is configured to provide the information to a determiner-notifier that is configured to determine, in response to the information, if the body portion may contact the object, and to generate a notification in response to determining that the body portion may contact the object. Such a device (e.g., attached to, or part of, a shoe) may be useful to warn a subject of a potential collision between an object (e.g., stairs, furniture, door jamb, curb, toy) and a body part (e.g., foot, toes) in which the subject has lost feeling, the ability to feel pain, or proprioception. And such a warning may help the subject to avoid inadvertently and repeatedly injuring the body part.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: January 30, 2018
    Assignee: ELWHA LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Mark A. Malamud, Tony S. Pan, Elizabeth A. Sweeney, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20180021564
    Abstract: In an embodiment, a nerve stimulation system includes a headset and an earpiece which includes two or more ear-contacting elements, for example an ear canal insert, and a concha insert. Ear-contacting elements may be mounted onto an earpiece housing have projecting mounting structures, which provide mechanical and electrical connection between ear-contacting elements and housing through various materials and configurations. In an embodiment, a nerve stimulation system includes a neural stimulation subsystem including neural stimulation device control circuitry for use in combination with a personal computing device to control a neural stimulation device.
    Type: Application
    Filed: August 9, 2017
    Publication date: January 25, 2018
    Inventors: Eleanor V. Goodall, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Mark A. Malamud, Stephen L. Malaska, Nathan P. Myhrvold, Tim F. Ramsey, Brittany Scheid, Katherine E. Sharadin, Elizabeth A. Sweeney, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 9876762
    Abstract: Structures and protocols are presented for signaling a status or decision concerning a wireless service or device within a region to a network participant or other communication device (smartphone or motor vehicle, e.g.).
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: January 23, 2018
    Assignee: Elwha LLC
    Inventors: Philip Lionel Barnes, Hon Wah Chin, Howard L. Davidson, Kimberly D. A. Hallman, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Brian Lee, Richard T. Lord, Robert W. Lord, Craig J. Mundie, Nathan P. Myhrvold, Nicholas F. Pasch, Eric D. Rudder, Clarence T. Tegreene, Marc Tremblay, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9866765
    Abstract: Computationally implemented methods and systems include capturing a scene that includes one or more images, through use of an array of more than one image sensor, selecting a particular portion of the scene that includes at least one image, wherein the selected particular portion is smaller than the scene, transmitting only the selected particular portion from the scene to a remote location, and de-emphasizing pixels from the scene that are not part of the selected particular portion of the scene. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: January 9, 2018
    Assignee: ELWHA, LLC
    Inventors: Ehren Brav, Russell Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, 3ric Johanson, Jordin T. Kare, Tony S Pan, Phillip Rutschman, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20170371038
    Abstract: The present disclosure provides systems and methods associated with determining velocity and/or acceleration information using ultrasound. A system may include one or more ultrasonic transmitters and/or receivers. An ultrasonic transmitter may be configured to transmit ultrasound into a region bounded by one or more surfaces. The ultrasonic receiver may detect a Doppler shift of reflected ultrasound to determine an acceleration and/or velocity associated with an object. The velocity and/or acceleration information may be utilized to modify the state of a gaming system, entertainment system, infotainment system, and/or other device. The velocity and/or acceleration date may be used in combination with a mapping or positioning system that generates positional data associated with the objects.
    Type: Application
    Filed: August 21, 2017
    Publication date: December 28, 2017
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, Victoria Y.H. Wood
  • Publication number: 20170372697
    Abstract: A sound processing system includes a sound input device for providing a sound input, a sound output device for providing a sound output, and processing electronics including a processor and a memory, wherein the processing electronics is configured to receive a target sound input identifying a target sound, receive a rule input establishing a sound processing rule that references the target sound, receive a sound input from the sound input device, analyze the sound input for the target sound, process the sound input according to the sound processing rule in view of the analysis of the sound input, and provide a processed sound output to the sound output device.
    Type: Application
    Filed: June 22, 2016
    Publication date: December 28, 2017
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood,, JR., Victoria Y.H. Wood
  • Publication number: 20170371228
    Abstract: Described embodiments include a plasmonic apparatus and method. The plasmonic apparatus includes a substrate having a first negative-permittivity layer comprising a first plasmonic surface. The plasmonic apparatus includes a plasmonic nanoparticle having a base with a second negative-permittivity layer comprising a second plasmonic surface. The plasmonic apparatus includes a dielectric-filled gap between the first plasmonic surface and the second plasmonic surface. The plasmonic apparatus includes a plasmonic cavity created by an assembly of the first plasmonic surface, the second plasmonic surface, and the dielectric-filled gap, and having a spectrally separated first fundamental resonant cavity wavelength ?1 and second fundamental resonant cavity wavelength ?2. The plasmonic apparatus includes a plurality of fluorescent particles located in the dielectric-filled gap.
    Type: Application
    Filed: June 27, 2016
    Publication date: December 28, 2017
    Inventors: GLEB M. AKSELROD, RODERICK A. HYDE, MURIEL Y. ISHIKAWA, JORDIN T. KARE, MAIKEN H. MIKKELSEN, TONY S. PAN, DAVID R. SMITH, CLARENCE T. TEGREENE, YAROSLAV A. URZHUMOV, CHARLES WHITMER, LOWELL L. WOOD, JR., VICTORIA Y.H. WOOD
  • Patent number: 9851618
    Abstract: Described embodiments include a plasmonic apparatus and method. The plasmonic apparatus includes a substrate having a first negative-permittivity layer comprising a first plasmonic surface. The plasmonic apparatus includes a plasmonic nanoparticle having a base with a second negative-permittivity layer comprising a second plasmonic surface. The plasmonic apparatus includes a dielectric-filled gap between the first plasmonic surface and the second plasmonic surface. The plasmonic apparatus includes a plasmonic cavity created by an assembly of the first plasmonic surface, the second plasmonic surface, and the dielectric-filled gap, and having a spectrally separated first fundamental resonant cavity wavelength ?1 and second fundamental resonant cavity wavelength ?2. The plasmonic apparatus includes a plurality of fluorescent particles located in the dielectric-filled gap.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: December 26, 2017
    Inventors: Gleb M. Akselrod, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Maiken H. Mikkelsen, Tony S. Pan, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood