Patents by Inventor Charles William Craig, III

Charles William Craig, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11591966
    Abstract: Features and methods for modulating a flow of cooling fluid to gas turbine engine components are provided. In one embodiment, an airfoil is provided having a flow modulation insert for modulating a flow of cooling fluid received in a cavity of a body of the airfoil. In another embodiment, a shroud is provided comprising a cooling channel for a flow of cooling fluid and an insert that varies in position to modulate the flow of cooling fluid through the cooling channel. In yet another embodiment, a method for operating a gas turbine engine having a cooling circuit for cooling one or more components of the gas turbine engine comprises increasing power provided to the engine and decreasing power provided to the engine to modulate a position of a flow modulation insert located in the cooling circuit and thereby modulate the flow of cooling fluid through the cooling circuit.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: February 28, 2023
    Assignee: General Electric Company
    Inventors: Robert Charles Groves, II, Kirk Douglas Gallier, Charles William Craig, III
  • Publication number: 20220356815
    Abstract: A gas turbine engine having a rotor blade stage with a plurality of circumferentially spaced rotors, a nozzle stage adjacent the rotor blade stage and including an outer nozzle end, at least one stop, and a shroud. The shroud having a forward end positioned radially outward from the circumferentially spaced rotor blades, and an aft end axially aft of the forward end. The at least one stop confronting at least a portion of the outer nozzle end.
    Type: Application
    Filed: April 1, 2022
    Publication date: November 10, 2022
    Inventors: Kirk Douglas Gallier, Charles William Craig, III
  • Patent number: 11306617
    Abstract: Shrouds and shroud segments for gas turbine engines are provided. In one embodiment, a shroud segment for a gas turbine engine having a rotor blade stage and a nozzle stage is provided. The shroud segment comprises a forward end defining an outer wall of the rotor blade stage and an aft end defining an outer wall of the nozzle stage. The aft end defines at least a portion of an opening therethrough for receipt of a nozzle, and the forward end and the aft end form a single, continuous component. In another embodiment, a gas turbine engine is provided, having a shroud with a forward end positioned near a leading edge of a plurality of rotor blades of a rotor blade stage and an aft end positioned near a trailing edge of a plurality of nozzles of a nozzle stage. Methods of assembling a gas turbine engine also are provided.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: April 19, 2022
    Assignee: General Electric Company
    Inventors: Kirk Douglas Gallier, Charles William Craig, III
  • Patent number: 10975701
    Abstract: Ceramic matrix composite (CMC) airfoils and methods for forming CMC airfoils are provided. In one embodiment, an airfoil is provided that includes opposite pressure and suction sides extending radially along a span and opposite leading and trailing edges extending radially along the span. The leading edge defines a forward end of the airfoil, and the trailing edge defines an aft end of the airfoil. A trailing edge portion is defined adjacent the trailing edge at the aft end, and a pocket is defined in and extends within the trailing edge portion. A heat pipe is received in the pocket. A method for forming an airfoil is provided that includes laying up a CMC material to form an airfoil preform assembly; processing the airfoil preform assembly; defining a pocket in a trailing edge portion of the airfoil; and inserting a heat pipe into the pocket.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: April 13, 2021
    Assignee: General Electric Company
    Inventors: David Alan Frey, Samir Armando Salamah, Charles William Craig, III
  • Patent number: 10961855
    Abstract: Nozzle segments and methods of cooling airfoils of nozzle segments are provided. For example, a turbine nozzle segment includes an inner band defining an inner band cavity and/or an outer band defining an outer band cavity. The inner band may define an inner band aperture extending from the inner band cavity through the inner band, and the outer band may define an outer band aperture extending from the outer band cavity through the outer band. Inner and/or outer band cooling passages may extend through a trailing edge portion of a CMC airfoil of the nozzle segment. An inlet of any inner band cooling passage is defined adjacent an inner band aperture, and an inlet of any outer band cooling passage is defined adjacent an outer band aperture. The cooling passage inlets are aligned with the adjacent inner or outer band apertures to provide cooling fluid from the respective cavity.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: March 30, 2021
    Assignee: General Electric Company
    Inventor: Charles William Craig, III
  • Publication number: 20210047932
    Abstract: Airfoils, additively manufactured airfoils, and methods of manufacturing airfoils are provided. For example, an airfoil comprises opposite pressure and suction sides that extend axially from a leading edge to a trailing edge and radially spaced apart inner and outer ends. The airfoil also comprises an outer wall defining the pressure and suction sides and leading and trailing edges. A rib extends within the airfoil from the pressure side to the suction side of the outer wall and radially from the inner to the outer end. The airfoil further comprises a first pre-impingement chamber surrounded by a first post-impingement chamber and a first dividing wall segment separating the first pre-impingement and first post-impingement chambers and having a plurality of cooling holes defined therein. The outer wall, rib, and first dividing wall segment are integrally formed as a single monolithic component.
    Type: Application
    Filed: October 30, 2020
    Publication date: February 18, 2021
    Inventors: Charles William Craig, III, David Alan Frey
  • Publication number: 20210017907
    Abstract: Features and methods for modulating a flow of cooling fluid to gas turbine engine components are provided. In one embodiment, an airfoil is provided having a flow modulation insert for modulating a flow of cooling fluid received in a cavity of a body of the airfoil. In another embodiment, a shroud is provided comprising a cooling channel for a flow of cooling fluid and an insert that varies in position to modulate the flow of cooling fluid through the cooling channel. In yet another embodiment, a method for operating a gas turbine engine having a cooling circuit for cooling one or more components of the gas turbine engine comprises increasing power provided to the engine and decreasing power provided to the engine to modulate a position of a flow modulation insert located in the cooling circuit and thereby modulate the flow of cooling fluid through the cooling circuit.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 21, 2021
    Inventors: Robert Charles Groves, II, Kirk Douglas Gallier, Charles William Craig, III
  • Patent number: 10837293
    Abstract: Airfoils, additively manufactured airfoils, and methods of manufacturing airfoils are provided. For example, an airfoil comprises opposite pressure and suction sides that extend axially from a leading edge to a trailing edge and radially spaced apart inner and outer ends. The airfoil also comprises an outer wall defining the pressure and suction sides and leading and trailing edges. A rib extends within the airfoil from the pressure side to the suction side of the outer wall and radially from the inner to the outer end. The airfoil further comprises a first pre-impingement chamber surrounded by a first post-impingement chamber and a first dividing wall segment separating the first pre-impingement and first post-impingement chambers and having a plurality of cooling holes defined therein. The outer wall, rib, and first dividing wall segment are integrally formed as a single monolithic component.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: November 17, 2020
    Assignee: General Electric Company
    Inventors: Charles William Craig, III, David Alan Frey
  • Patent number: 10794289
    Abstract: Features and methods for modulating a flow of cooling fluid to gas turbine engine components are provided. In one embodiment, an airfoil is provided having a flow modulation insert for modulating a flow of cooling fluid received in a cavity of a body of the airfoil. In another embodiment, a shroud is provided comprising a cooling channel for a flow of cooling fluid and an insert that varies in position to modulate the flow of cooling fluid through the cooling channel. In yet another embodiment, a method for operating a gas turbine engine having a cooling circuit for cooling one or more components of the gas turbine engine comprises increasing power provided to the engine and decreasing power provided to the engine to modulate a position of a flow modulation insert located in the cooling circuit and thereby modulate the flow of cooling fluid through the cooling circuit.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: October 6, 2020
    Assignee: General Electric Company
    Inventors: Robert Charles Groves, II, Kirk Douglas Gallier, Charles William Craig, III
  • Publication number: 20200157949
    Abstract: Nozzle segments and methods of cooling airfoils of nozzle segments are provided. For example, a turbine nozzle segment includes an inner band defining an inner band cavity and/or an outer band defining an outer band cavity. The inner band may define an inner band aperture extending from the inner band cavity through the inner band, and the outer band may define an outer band aperture extending from the outer band cavity through the outer band. Inner and/or outer band cooling passages may extend through a trailing edge portion of a CMC airfoil of the nozzle segment. An inlet of any inner band cooling passage is defined adjacent an inner band aperture, and an inlet of any outer band cooling passage is defined adjacent an outer band aperture. The cooling passage inlets are aligned with the adjacent inner or outer band apertures to provide cooling fluid from the respective cavity.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 21, 2020
    Inventor: Charles William Craig, III
  • Publication number: 20200040769
    Abstract: Shrouds and shroud segments for gas turbine engines are provided. In one embodiment, a shroud segment for a gas turbine engine having a rotor blade stage and a nozzle stage is provided. The shroud segment comprises a forward end defining an outer wall of the rotor blade stage and an aft end defining an outer wall of the nozzle stage. The aft end defines at least a portion of an opening therethrough for receipt of a nozzle, and the forward end and the aft end form a single, continuous component. In another embodiment, a gas turbine engine is provided, having a shroud with a forward end positioned near a leading edge of a plurality of rotor blades of a rotor blade stage and an aft end positioned near a trailing edge of a plurality of nozzles of a nozzle stage. Methods of assembling a gas turbine engine also are provided.
    Type: Application
    Filed: October 4, 2019
    Publication date: February 6, 2020
    Inventors: Kirk Douglas Gallier, Charles William Craig, III
  • Publication number: 20200024966
    Abstract: Airfoils, additively manufactured airfoils, and methods of manufacturing airfoils are provided. For example, an airfoil comprises opposite pressure and suction sides that extend axially from a leading edge to a trailing edge and radially spaced apart inner and outer ends. The airfoil also comprises an outer wall defining the pressure and suction sides and leading and trailing edges. A rib extends within the airfoil from the pressure side to the suction side of the outer wall and radially from the inner to the outer end. The airfoil further comprises a first pre-impingement chamber surrounded by a first post-impingement chamber and a first dividing wall segment separating the first pre-impingement and first post-impingement chambers and having a plurality of cooling holes defined therein. The outer wall, rib, and first dividing wall segment are integrally formed as a single monolithic component.
    Type: Application
    Filed: July 19, 2018
    Publication date: January 23, 2020
    Inventors: Charles William Craig, III, David Alan Frey
  • Patent number: 10494930
    Abstract: Nozzle segments and methods of cooling airfoils of nozzle segments are provided. For example, a turbine nozzle segment includes an inner band defining an inner band cavity and/or an outer band defining an outer band cavity. The inner band may define an inner band aperture extending from the inner band cavity through the inner band, and the outer band may define an outer band aperture extending from the outer band cavity through the outer band. Inner and/or outer band cooling passages may extend through a trailing edge portion of a CMC airfoil of the nozzle segment. An inlet of any inner band cooling passage is defined adjacent an inner band aperture, and an inlet of any outer band cooling passage is defined adjacent an outer band aperture. The cooling passage inlets are aligned with the adjacent inner or outer band apertures to provide cooling fluid from the respective cavity.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: December 3, 2019
    Assignee: General Electric Company
    Inventor: Charles William Craig, III
  • Patent number: 10450897
    Abstract: Shrouds and shroud segments for gas turbine engines are provided. In one embodiment, a shroud segment for a gas turbine engine having a rotor blade stage and a nozzle stage is provided. The shroud segment comprises a forward end defining an outer wall of the rotor blade stage and an aft end defining an outer wall of the nozzle stage. The aft end defines at least a portion of an opening therethrough for receipt of a nozzle, and the forward end and the aft end form a single, continuous component. In another embodiment, a gas turbine engine is provided, having a shroud with a forward end positioned near a leading edge of a plurality of rotor blades of a rotor blade stage and an aft end positioned near a trailing edge of a plurality of nozzles of a nozzle stage. Methods of assembling a gas turbine engine also are provided.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: October 22, 2019
    Assignee: General Electric Company
    Inventors: Kirk Douglas Gallier, Charles William Craig, III
  • Publication number: 20190242263
    Abstract: Ceramic matrix composite (CMC) airfoils and methods for forming CMC airfoils are provided. In one embodiment, an airfoil is provided that includes opposite pressure and suction sides extending radially along a span and opposite leading and trailing edges extending radially along the span. The leading edge defines a forward end of the airfoil, and the trailing edge defines an aft end of the airfoil. A trailing edge portion is defined adjacent the trailing edge at the aft end, and a pocket is defined in and extends within the trailing edge portion. A heat pipe is received in the pocket. A method for forming an airfoil is provided that includes laying up a CMC material to form an airfoil preform assembly; processing the airfoil preform assembly; defining a pocket in a trailing edge portion of the airfoil; and inserting a heat pipe into the pocket.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Inventors: David Alan Frey, Samir Armando Salamah, Charles William Craig, III
  • Patent number: 10309242
    Abstract: Ceramic matrix composite (CMC) airfoils and methods for forming CMC airfoils are provided. In one embodiment, an airfoil is provided that includes opposite pressure and suction sides extending radially along a span and opposite leading and trailing edges extending radially along the span. The leading edge defines a forward end of the airfoil, and the trailing edge defines an aft end of the airfoil. A trailing edge portion is defined adjacent the trailing edge at the aft end, and a pocket is defined in and extends within the trailing edge portion. A heat pipe is received in the pocket. A method for forming an airfoil is provided that includes laying up a CMC material to form an airfoil preform assembly; processing the airfoil preform assembly; defining a pocket in a trailing edge portion of the airfoil; and inserting a heat pipe into the pocket.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: June 4, 2019
    Assignee: General Electric Company
    Inventors: David Alan Frey, Samir Armando Salamah, Charles William Craig, III
  • Publication number: 20180045117
    Abstract: Features and methods for modulating a flow of cooling fluid to gas turbine engine components are provided. In one embodiment, an airfoil is provided having a flow modulation insert for modulating a flow of cooling fluid received in a cavity of a body of the airfoil. In another embodiment, a shroud is provided comprising a cooling channel for a flow of cooling fluid and an insert that varies in position to modulate the flow of cooling fluid through the cooling channel. In yet another embodiment, a method for operating a gas turbine engine having a cooling circuit for cooling one or more components of the gas turbine engine comprises increasing power provided to the engine and decreasing power provided to the engine to modulate a position of a flow modulation insert located in the cooling circuit and thereby modulate the flow of cooling fluid through the cooling circuit.
    Type: Application
    Filed: August 9, 2016
    Publication date: February 15, 2018
    Inventors: Robert Charles Groves, II, Kirk Douglas Gallier, Charles William Craig, III
  • Publication number: 20180045063
    Abstract: Ceramic matrix composite (CMC) airfoils and methods for forming CMC airfoils are provided. In one embodiment, an airfoil is provided that includes opposite pressure and suction sides extending radially along a span and opposite leading and trailing edges extending radially along the span. The leading edge defines a forward end of the airfoil, and the trailing edge defines an aft end of the airfoil. A trailing edge portion is defined adjacent the trailing edge at the aft end, and a pocket is defined in and extends within the trailing edge portion. A heat pipe is received in the pocket. A method for forming an airfoil is provided that includes laying up a CMC material to form an airfoil preform assembly; processing the airfoil preform assembly; defining a pocket in a trailing edge portion of the airfoil; and inserting a heat pipe into the pocket.
    Type: Application
    Filed: August 10, 2016
    Publication date: February 15, 2018
    Inventors: David Alan Frey, Samir Armando Salamah, Charles William Craig, III
  • Publication number: 20180016924
    Abstract: Shrouds and shroud segments for gas turbine engines are provided. In one embodiment, a shroud segment for a gas turbine engine having a rotor blade stage and a nozzle stage is provided. The shroud segment comprises a forward end defining an outer wall of the rotor blade stage and an aft end defining an outer wall of the nozzle stage. The aft end defines at least a portion of an opening therethrough for receipt of a nozzle, and the forward end and the aft end form a single, continuous component. In another embodiment, a gas turbine engine is provided, having a shroud with a forward end positioned near a leading edge of a plurality of rotor blades of a rotor blade stage and an aft end positioned near a trailing edge of a plurality of nozzles of a nozzle stage. Methods of assembling a gas turbine engine also are provided.
    Type: Application
    Filed: July 18, 2016
    Publication date: January 18, 2018
    Inventors: Kirk Douglas Gallier, Charles William Craig, III
  • Publication number: 20170362941
    Abstract: Nozzle segments and methods of cooling airfoils of nozzle segments are provided. For example, a turbine nozzle segment includes an inner band defining an inner band cavity and/or an outer band defining an outer band cavity. The inner band may define an inner band aperture extending from the inner band cavity through the inner band, and the outer band may define an outer band aperture extending from the outer band cavity through the outer band. Inner and/or outer band cooling passages may extend through a trailing edge portion of a CMC airfoil of the nozzle segment. An inlet of any inner band cooling passage is defined adjacent an inner band aperture, and an inlet of any outer band cooling passage is defined adjacent an outer band aperture. The cooling passage inlets are aligned with the adjacent inner or outer band apertures to provide cooling fluid from the respective cavity.
    Type: Application
    Filed: June 16, 2016
    Publication date: December 21, 2017
    Inventor: Charles William Craig, III