Patents by Inventor Charlie Booth

Charlie Booth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160121268
    Abstract: Disclosed herein are methods and systems for removing tritium oxide from a mixture comprising water. The method captures the tritium oxide in a much smaller volume suitable for economical disposal. The decontaminated water may be then be discharged.
    Type: Application
    Filed: July 11, 2013
    Publication date: May 5, 2016
    Inventors: Randall N. Avery, Keith Moser, Charlie Booth
  • Publication number: 20150027165
    Abstract: The present invention is a novel method for removing tritium oxide contamination from a solution with water. The method captures the tritium oxide in a much smaller volume suitable for economical disposal. In so doing the original water is decontaminated of the tritium oxide and may be discharged.
    Type: Application
    Filed: May 27, 2014
    Publication date: January 29, 2015
    Inventors: Randall N. Avery, Charlie Booth, Keith Moser
  • Patent number: 8758572
    Abstract: The present invention is a novel method for removing tritium oxide contamination from a solution with water. The method captures the tritium oxide in a much smaller volume suitable for economical disposal. In so doing the original water is decontaminated of the tritium oxide and may be discharged.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: June 24, 2014
    Assignees: Exelon Generation Company, LLC, Industrial Idea Partners
    Inventors: Randall N. Avery, Charlie Booth, Keith Moser
  • Patent number: 8597471
    Abstract: A method for concentrating contaminated sorbate in a solution which includes contaminated sorbate and clean sorbate is described wherein contaminated sorbate having a freezing point which is higher than the freezing point of the clean sorbate is cooled to a temperature below the freezing point of the contaminated sorbate and above the freezing point of the clean sorbate to concentrate the contaminated sorbate by cycling alternately from a desorption cycle to an adsorption cycle. By maintaining the solution at a temperature between the freezing point of the contaminated sorbate and the freezing point of the clean sorbate, the clean sorbate can be evaporated off.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: December 3, 2013
    Assignee: Industrial Idea Partners, Inc.
    Inventors: Randall N. Avery, Charlie Booth
  • Patent number: 8522569
    Abstract: A method and system of utilizing waste heat from a plurality of data center equipment comprising the steps of collecting waste heat from a plurality of data center equipment and utilizing said waste heat as the driving heat input for a heat driven engine. Heat recovery means collects waste heat from heat-producing equipment and transfers it in the form of hot water to drive a heat driven engine such as a chiller or heat pump. The output of the heat driven engine may be put to many productive uses, thereby reducing the over all energy load on the data center.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: September 3, 2013
    Assignee: Industrial Idea Partners, Inc.
    Inventors: Randal N. Avery, Charlie Booth, Wes Livingston, Tom Watson Lopp
  • Publication number: 20120266629
    Abstract: The present invention is a novel method for removing tritium oxide contamination from a solution with water. The method captures the tritium oxide in a much smaller volume suitable for economical disposal. In so doing the original water is decontaminated of the tritium oxide and may be discharged.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 25, 2012
    Inventors: Randall N. Avery, Charlie Booth, Keith Moser
  • Publication number: 20120042688
    Abstract: A device and method for concentrating contaminants in a solution comprising contaminated sorbate and clean sorbate wherein the contaminated sorbate freezes at a higher temperature than the clean sorbate. By maintaining the solution at a temperature between the freezing point of the contaminated sorbate and the freezing point of the clean sorbate, the clean sorbate may be evaporated off for processing through a sorbent/sorbate working pair adsorption/desorption cycle. Sensors in the adsorption chamber monitors for the presence of contaminated sorbate vapor. Sensors in the evaporator chamber monitor the temperature of the solution and partial pressure within the evaporator chamber.
    Type: Application
    Filed: August 19, 2010
    Publication date: February 23, 2012
    Inventors: Randall N. Avery, Charlie Booth
  • Publication number: 20110056219
    Abstract: A device and method for utilizing waste heat from the exhaust of a low pressure condensing steam turbine. An adsorption chiller is driven by heat recovered from the exhaust steam by incorporating a heat exchanger between the low pressure condensing steam turbine and the condenser of the steam turbine. The heat exchanger provides heated fluid which is then utilized as the hot water for the adsorption chiller. The adsorption chiller outputs chilled water which may be beneficially used for many purposes in the power plant.
    Type: Application
    Filed: September 8, 2009
    Publication date: March 10, 2011
    Inventors: Randall N. Avery, Charlie Booth
  • Publication number: 20110048920
    Abstract: An adsorption-desalination unit utilizing a silica gel—water working pair adsorbent—adsorbate having an economizing heat exchanger to pre-heat the incoming source seawater to be desalinated in an evaporator from about 8° C. to about 1° C. above the ambient seawater temperature. The economizing heat exchanger employs heat captured during the adsorption cycle to pre-heat incoming source seawater, thereby increasing the efficient use of energy in the unit. The heating fluid utilized to drive the desorption cycle is further utilized to heat the evaporator. A mist eliminator positioned intermediate the evaporator and the adsorbent heat exchanger chambers prevents non-vaporized water from entering the adsorbent heat exchanger chambers.
    Type: Application
    Filed: August 28, 2009
    Publication date: March 3, 2011
    Inventors: Randall N. Avery, Charlie Booth