Patents by Inventor CHASE CAMPBELL

CHASE CAMPBELL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180353921
    Abstract: An ultrasonic system for homogenizing a sample includes an ultrasonic transducer and a control system. The transducer includes a horn or other probe that oscillates to produce cavitation in the sample and a converter that drives the horn through its oscillatory motion. The control system includes a closed-loop amplitude-control configuration and process. In particular, the control system includes a user interface, a controller, and a high-frequency driver, all connected together in a closed-loop configuration for enabling amplitude-control feedback. Control software includes programming for the closed-loop amplitude-control process including receiving a user-inputted desired amplitude of oscillatory horn motion, driving the transducer at a corresponding power level, determining the actual amplitude of oscillatory horn motion, and automatically adjusting the power level to the transducer to maintain the desired amplitude during operation of the ultrasonic system.
    Type: Application
    Filed: June 7, 2018
    Publication date: December 13, 2018
    Applicant: OMNI INTERNATIONAL, INC.
    Inventors: Spencer SMITH, Chase CAMPBELL
  • Publication number: 20180357600
    Abstract: A solution for inventory identification and quantification using a portable computing device (“PCD”) comprising a camera subsystem is described. An exemplary embodiment of the solution comprises a method that begins with capturing a video stream of a physical inventory comprised of a plurality of individual inventory items. Using a set of tracking points appearing in sequential frames, and optical flow calculations, coordinates for global centers of the frames may be calculated. From there, coordinates for identified inventory items may be determined relative to the global centers of the frames within which they are captured. Comparing the calculated coordinates for inventory items identified in each frame, as well as fingerprint data, embodiments of the method may identify and filter duplicate image captures of the same inventory item within some statistical certainty. Symbology data, such as QR codes, are decoded and quantified as part of the inventory count.
    Type: Application
    Filed: August 20, 2018
    Publication date: December 13, 2018
    Inventors: JED WASILEWSKY, CHASE CAMPBELL, KELLY STORM
  • Publication number: 20170249590
    Abstract: A solution for inventory identification and quantification using a portable computing device (“PCD”) comprising a camera subsystem is described. An exemplary embodiment of the solution comprises a method that begins with capturing a video stream of a physical inventory comprised of a plurality of individual inventory items. Using a set of tracking points appearing in sequential frames, and optical flow calculations, coordinates for global centers of the frames may be calculated. From there, coordinates for identified inventory items may be determined relative to the global centers of the frames within which they are captured. Comparing the calculated coordinates for inventory items identified in each frame, as well as fingerprint data, embodiments of the method may identify and filter duplicate image captures of the same inventory item within some statistical certainty. Symbology data, such as QR codes, are decoded and quantified as part of the inventory count.
    Type: Application
    Filed: May 12, 2017
    Publication date: August 31, 2017
    Inventors: JED WASILEWSKY, CHASE CAMPBELL, KELLY STORM
  • Publication number: 20170220990
    Abstract: A solution for inventory identification and quantification using a portable computing device (“PCD”) comprising a camera subsystem is described. An exemplary embodiment of the solution comprises a method that begins with capturing a video stream of a physical inventory comprised of a plurality of individual inventory items. Using a set of tracking points appearing in sequential frames, and optical flow calculations, coordinates for global centers of the frames may be calculated. From there, coordinates for identified inventory items may be determined relative to the global centers of the frames within which they are captured. Comparing the calculated coordinates for inventory items identified in each frame, as well as fingerprint data, embodiments of the method may identify and filter duplicate image captures of the same inventory item within some statistical certainty. Symbology data, such as QR codes, are decoded and quantified as part of the inventory count.
    Type: Application
    Filed: April 11, 2017
    Publication date: August 3, 2017
    Inventors: JED WASILEWSKY, CHASE CAMPBELL, KELLY STORM
  • Publication number: 20170124508
    Abstract: A solution for inventory identification and quantification using a portable computing device (“PCD”) comprising a camera subsystem is described. An exemplary embodiment of the solution comprises a method that begins with capturing a video stream of a physical inventory comprised of a plurality of individual inventory items. Using a set of tracking points appearing in sequential frames, and optical flow calculations, coordinates for global centers of the frames may be calculated. From there, coordinates for identified inventory items may be determined relative to the global centers of the frames within which they are captured. Comparing the calculated coordinates for inventory items identified in each frame, as well as fingerprint data, embodiments of the method may identify and filter duplicate image captures of the same inventory item within some statistical certainty. Symbology data, such as QR codes, are decoded and quantified as part of the inventory count.
    Type: Application
    Filed: October 7, 2016
    Publication date: May 4, 2017
    Inventors: JED WASILEWSKY, CHASE CAMPBELL, KELLY STORM