Patents by Inventor Che-Chi Lee

Che-Chi Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11915777
    Abstract: Some embodiments include an integrated assembly having first and second source/drain regions laterally offset from one another. Metal silicide is adjacent to lateral surfaces of the source/drain regions. Metal is adjacent to the metal silicide. Container-shaped first and second capacitor electrodes are coupled to the source/drain regions through the metal silicide and the metal. Capacitor dielectric material lines interior surfaces of the container-shaped first and second capacitor electrodes, A shared capacitor electrode extends vertically between the first and second capacitor electrodes, and extends into the lined first and second capacitor electrodes. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: February 27, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Che-Chi Lee, Terrence B. McDaniel, Kehao Zhang, Albert P. Chan, Clement Jacob, Luca Fumagalli, Vinay Nair
  • Publication number: 20230178586
    Abstract: Some embodiments include an integrated assembly having a laterally-extending container-shaped first capacitor electrode, and having a laterally-extending container-shaped second capacitor electrode laterally offset from the first capacitor electrode. Capacitor dielectric material lines interior surfaces and exterior surfaces of the container-shaped first and second capacitor electrodes. A shared capacitor electrode extends vertically between the first and second capacitor electrodes, and extends along the lined interior and exterior surfaces of the first and second capacitor electrodes. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: January 27, 2023
    Publication date: June 8, 2023
    Applicant: Micron Technology, Inc.
    Inventor: Che-Chi Lee
  • Patent number: 11616119
    Abstract: Some embodiments include an integrated assembly having a laterally-extending container-shaped first capacitor electrode, and having a laterally-extending container-shaped second capacitor electrode laterally offset from the first capacitor electrode. Capacitor dielectric material lines interior surfaces and exterior surfaces of the container-shaped first and second capacitor electrodes. A shared capacitor electrode extends vertically between the first and second capacitor electrodes, and extends along the lined interior and exterior surfaces of the first and second capacitor electrodes. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: March 28, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Che-Chi Lee
  • Publication number: 20220358971
    Abstract: Some embodiments include an integrated assembly having first and second source/drain regions laterally offset from one another. Metal silicide is adjacent to lateral surfaces of the source/drain regions. Metal is adjacent to the metal silicide. Container-shaped first and second capacitor electrodes are coupled to the source/drain regions through the metal silicide and the metal. Capacitor dielectric material lines interior surfaces of the container-shaped first and second capacitor electrodes, A shared capacitor electrode extends vertically between the first and second capacitor electrodes, and extends into the lined first and second capacitor electrodes. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: February 10, 2022
    Publication date: November 10, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Che-Chi Lee, Terrence B. McDaniel, Kehao Zhang, Albert P. Chan, Clement Jacob, Luca Fumagalli, Vinay Nair
  • Publication number: 20220344450
    Abstract: Some embodiments include an integrated assembly having a laterally-extending container-shaped first capacitor electrode, and having a laterally-extending container-shaped second capacitor electrode laterally offset from the first capacitor electrode. Capacitor dielectric material lines interior surfaces and exterior surfaces of the container-shaped first and second capacitor electrodes. A shared capacitor electrode extends vertically between the first and second capacitor electrodes, and extends along the lined interior and exterior surfaces of the first and second capacitor electrodes. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 27, 2022
    Applicant: Micron Technology, Inc.
    Inventor: Che-Chi Lee
  • Patent number: 11282548
    Abstract: Some embodiments include an integrated assembly having first and second source/drain regions laterally offset from one another. Metal silicide is adjacent to lateral surfaces of the source/drain regions. Metal is adjacent to the metal silicide. Container-shaped first and second capacitor electrodes are coupled to the source/drain regions through the metal silicide and the metal. Capacitor dielectric material lines interior surfaces of the container-shaped first and second capacitor electrodes, A shared capacitor electrode extends vertically between the first and second capacitor electrodes, and extends into the lined first and second capacitor electrodes. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: March 22, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Che-Chi Lee, Terrence B. McDaniel, Kehao Zhang, Albert P. Chan, Clement Jacob, Luca Fumagalli, Vinay Nair
  • Patent number: 10825691
    Abstract: Methods, apparatuses, and systems related to stack a semiconductor structure are described. An example method includes stacking a semiconductor structure between electrode materials having a first silicate material on a working surface. The method further includes forming a first nitride material on the first silicate material. The method further includes forming a second silicate material on the first nitride material. The method further includes forming a second nitride material on the second silicate material. The method further includes forming a third silicate material on the second nitride. The method further includes forming a third nitride on the third silicate material. The method further includes using a wet etch process to increase a width between electrode materials. The method further includes using a dry etch process to remove a portion of materials within the semiconductor structure.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: November 3, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Che-Chi Lee
  • Patent number: 10347487
    Abstract: Apparatus and methods of forming an apparatus can include one or more cell contacts in an integrated circuit in a variety of applications. In various embodiments, a resist underlayer can be formed on a dielectric spacer formed on a structure for a cell contact, where the structure can include a patterned area of pillars on a silicon-rich dielectric anti-reflective coating region disposed on a dielectric region. The resist underlayer, the dielectric spacer, the patterned area of pillars, the silicon-rich dielectric anti-reflective coating, and the dielectric region can be processed to form an array of columns in the dielectric region. Regions between the columns of the array of columns can be filled with conductive material, forming the cell contact. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: July 9, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Che-Chi Lee, Hiromitsu Oshima
  • Publication number: 20190148136
    Abstract: Apparatus and methods of forming an apparatus can include one or more cell contacts in an integrated circuit in a variety of applications. In various embodiments, a resist underlayer can be formed on a dielectric spacer formed on a structure for a cell contact, where the structure can include a patterned area of pillars on a silicon-rich dielectric anti-reflective coating region disposed on a dielectric region. The resist underlayer, the dielectric spacer, the patterned area of pillars, the silicon-rich dielectric anti-reflective coating, and the dielectric region can be processed to form an array of columns in the dielectric region. Regions between the columns of the array of columns can be filled with conductive material, forming the cell contact. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 16, 2019
    Inventors: Che-Chi Lee, Hiromitsu Oshima
  • Publication number: 20160043089
    Abstract: Memory cell support lattices and methods of forming the same are described herein. As an example, a method of forming a memory cell support lattice includes forming a mask on a number of capacitor elements in an array, such that a space between vertically and horizontally adjacent capacitor elements is fully covered and a space between diagonally adjacent capacitor elements is partially covered and forming a support lattice in a support material by etching the support material to remove portions of the support material below the openings in the mask.
    Type: Application
    Filed: October 7, 2015
    Publication date: February 11, 2016
    Inventors: Zhimin Song, Che-Chi Lee, Brett Busch
  • Patent number: 9184167
    Abstract: Memory cell support lattices and methods of forming the same are described herein. As an example, a method of forming a memory cell support lattice includes forming a mask on a number of capacitor elements in an array, such that a space between vertically and horizontally adjacent capacitor elements is fully covered and a space between diagonally adjacent capacitor elements is partially covered and forming a support lattice in a support material by etching the support material to remove portions of the support material below the openings in the mask.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: November 10, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Zhimin Song, Che-Chi Lee, Brett Busch
  • Patent number: 9076757
    Abstract: A method of forming a plurality of capacitors includes providing a plurality of capacitor electrodes, an elevationally inner insulative retaining material received laterally about the capacitor electrodes, an elevationally outer insulative retaining material received laterally about the capacitor electrodes, a first material received laterally about the capacitor electrodes elevationally inward of the inner insulative retaining material, and a second material received laterally about the capacitor electrodes elevationally between the inner and outer insulative retaining materials. Openings are anisotropically etched to extend through the outer insulative retaining material and the second material. After the anisotropic etching, remaining of the second material is isotropically etched through the openings from being received laterally about the capacitor electrodes between the inner and outer insulative retaining materials.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: July 7, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Che-Chi Lee
  • Patent number: 8921977
    Abstract: A capacitor array includes a plurality of capacitors and a support frame. Each capacitor includes an electrode. The support frame supports the plurality of electrodes and includes a plurality of support structures corresponding to the plurality of electrodes. Each support structure may surround the respective electrode. The support frame may include oxide of a doped oxidizable material.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: December 30, 2014
    Assignee: Nan Ya Technology Corporation
    Inventors: Jen Jui Huang, Che Chi Lee, Shih Shu Tsai, Cheng Shun Chen, Shao Ta Hsu, Chao Wen Lay, Chun I Hsieh, Ching Kai Lin
  • Publication number: 20140054745
    Abstract: Memory cell support lattices and methods of forming the same are described herein. As an example, a method of forming a memory cell support lattice includes forming a mask on a number of capacitor elements in an array, such that a space between vertically and horizontally adjacent capacitor elements is fully covered and a space between diagonally adjacent capacitor elements is partially covered and forming a support lattice in a support material by etching the support material to remove portions of the support material below the openings in the mask.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Zhimin Song, Che-Chi Lee, Brett Busch
  • Publication number: 20130323902
    Abstract: A method of forming a plurality of capacitors includes providing a plurality of capacitor electrodes, an elevationally inner insulative retaining material received laterally about the capacitor electrodes, an elevationally outer insulative retaining material received laterally about the capacitor electrodes, a first material received laterally about the capacitor electrodes elevationally inward of the inner insulative retaining material, and a second material received laterally about the capacitor electrodes elevationally between the inner and outer insulative retaining materials. Openings are anisotropically etched to extend through the outer insulative retaining material and the second material. After the anisotropic etching, remaining of the second material is isotropically etched through the openings from being received laterally about the capacitor electrodes between the inner and outer insulative retaining materials.
    Type: Application
    Filed: August 12, 2013
    Publication date: December 5, 2013
    Applicant: Micron Technology, Inc.
    Inventor: Che-Chi Lee
  • Patent number: 8518788
    Abstract: A method of forming a plurality of capacitors includes providing a plurality of capacitor electrodes, an elevationally inner insulative retaining material received laterally about the capacitor electrodes, an elevationally outer insulative retaining material received laterally about the capacitor electrodes, a first material received laterally about the capacitor electrodes elevationally inward of the inner insulative retaining material, and a second material received laterally about the capacitor electrodes elevationally between the inner and outer insulative retaining materials. Openings are anisotropically etched to extend through the outer insulative retaining material and the second material. After the anisotropic etching, remaining of the second material is isotropically etched through the openings from being received laterally about the capacitor electrodes between the inner and outer insulative retaining materials.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: August 27, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Che-Chi Lee
  • Publication number: 20130161786
    Abstract: A capacitor array includes a plurality of capacitors and a support frame. Each capacitor includes an electrode. The support frame supports the plurality of electrodes and includes a plurality of support structures corresponding to the plurality of electrodes. Each support structure may surround the respective electrode. The support frame may include oxide of a doped oxidizable material.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: Nan Ya Technology Corporation
    Inventors: Jen Jui Huang, Che Chi Lee, Shih Shu Tsai, Cheng Shun Chen, Shao Ta Hsu, Chao Wen Lay, Chun I. Hsieh, Ching Kai Lin
  • Publication number: 20120040507
    Abstract: A method of forming a plurality of capacitors includes providing a plurality of capacitor electrodes, an elevationally inner insulative retaining material received laterally about the capacitor electrodes, an elevationally outer insulative retaining material received laterally about the capacitor electrodes, a first material received laterally about the capacitor electrodes elevationally inward of the inner insulative retaining material, and a second material received laterally about the capacitor electrodes elevationally between the inner and outer insulative retaining materials. Openings are anisotropically etched to extend through the outer insulative retaining material and the second material. After the anisotropic etching, remaining of the second material is isotropically etched through the openings from being received laterally about the capacitor electrodes between the inner and outer insulative retaining materials.
    Type: Application
    Filed: August 11, 2010
    Publication date: February 16, 2012
    Inventor: Che-Chi Lee