Patents by Inventor Che-Hua Hsu

Che-Hua Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953740
    Abstract: A package structure including a photonic, an electronic die, an encapsulant and a waveguide is provided. The photonic die includes an optical coupler. The electronic die is electrically coupled to the photonic die. The encapsulant laterally encapsulates the photonic die and the electronic die. The waveguide is disposed over the encapsulant and includes an upper surface facing away from the encapsulant. The waveguide includes a first end portion and a second end portion, the first end portion is optically coupled to the optical coupler, and the second end portion has a groove on the upper surface.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Patent number: 11947173
    Abstract: A package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler; an interconnect structure over the photonic layer; an electronic die and a first dielectric layer over the interconnect structure, where the electronic die is connected to the interconnect structure; a first substrate bonded to the electronic die and the first dielectric layer; a socket attached to a top surface of the first substrate; and a fiber holder coupled to the first substrate through the socket, where the fiber holder includes a prism that re-orients an optical path of an optical signal.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Publication number: 20240099154
    Abstract: A magnetoresistive random access memory (MRAM) device includes a first array region and a second array region on a substrate, a first magnetic tunneling junction (MTJ) on the first array region, a first top electrode on the first MTJ, a second MTJ on the second array region, and a second top electrode on the second MTJ. Preferably, the first top electrode and the second top electrode include different nitrogen to titanium (N/Ti) ratios.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Applicant: UNITED MICROELECTRONICS CORP
    Inventors: Hui-Lin Wang, Si-Han Tsai, Dong-Ming Wu, Chen-Yi Weng, Ching-Hua Hsu, Ju-Chun Fan, Yi-Yu Lin, Che-Wei Chang, Po-Kai Hsu, Jing-Yin Jhang
  • Publication number: 20240071825
    Abstract: Systems, devices and methods of manufacturing a system on silicon wafer (SoSW) device and package are described herein. A plurality of functional dies is formed in a silicon wafer. Different sets of masks are used to form different types of the functional dies in the silicon wafer. A first redistribution structure is formed over the silicon wafer and provides local interconnects between adjacent dies of the same type and/or of different types. A second redistribution structure may be formed over the first redistribution layer and provides semi-global and/or global interconnects between non-adjacent dies of the same type and/or of different types. An optional backside redistribution structure may be formed over a second side of the silicon wafer opposite the first redistribution layer. The optional backside redistribution structure may provide backside interconnects between functional dies of different types.
    Type: Application
    Filed: November 7, 2023
    Publication date: February 29, 2024
    Inventors: Chen-Hua Yu, Wei Ling Chang, Chuei-Tang Wang, Tin-Hao Kuo, Che-Wei Hsu
  • Publication number: 20240069277
    Abstract: A semiconductor package includes a first die stack structure and a second die stack structure, an insulating encapsulation, a redistribution structure, at least one prism structure and at least one reflector. The first die stack structure and the second die stack structure are laterally spaced apart from each other along a first direction, and each of the first die stack structure and the second die stack structure comprises an electronic die; and a photonic die electronically communicating with the electronic die. The insulating encapsulation laterally encapsulates the first die stack structure and the second die stack structure. The redistribution structure is disposed on the first die stack structure, the second die stack structure and the insulating encapsulation, and electrically connected to the first die stack structure and the second die stack structure. The at least one prism structure is disposed within the redistribution structure and optically coupled to the photonic die.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Yi Kuo, Chen-Hua Yu, Cheng-Chieh Hsieh, Che-Hsiang Hsu, Chung-Ming Weng, Tsung-Yuan Yu
  • Patent number: 11917923
    Abstract: A magnetoresistive random access memory (MRAM) structure, including a substrate and multiple MRAM cells on the substrate, wherein the MRAM cells are arranged in a memory region adjacent to a logic region. An ultra low-k (ULK) layer covers the MRAM cells, wherein the surface portion of ultra low-k layer is doped with fluorine, and dents are formed on the surface of ultra low-k layer at the boundaries between the memory region and the logic region.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: February 27, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Ching-Hua Hsu, Si-Han Tsai, Shun-Yu Huang, Chen-Yi Weng, Ju-Chun Fan, Che-Wei Chang, Yi-Yu Lin, Po-Kai Hsu, Jing-Yin Jhang, Ya-Jyuan Hung
  • Patent number: 9490342
    Abstract: A method for fabricating a semiconductor device includes the following steps. Firstly, a dummy gate structure having a dummy gate electrode layer is provided. Then, the dummy gate electrode layer is removed to form an opening in the dummy gate structure, thereby exposing an underlying layer beneath the dummy gate electrode layer. Then, an ammonium hydroxide treatment process is performed to treat the dummy gate structure. Afterwards, a metal material is filled into the opening.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: November 8, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Ming Lai, Yi-Wen Chen, Zhi-Cheng Lee, Tong-Jyun Huang, Che-Hua Hsu, Kun-Hsien Lin, Tzung-Ying Lee, Chi-Mao Hsu, Hsin-Fu Huang, Chin-Fu Lin
  • Patent number: 9384962
    Abstract: A method of manufacturing a metal gate is provided. The method includes providing a substrate. Then, a gate dielectric layer is formed on the substrate. A multi-layered stack structure having a work function metal layer is formed on the gate dielectric layer. An O2 ambience treatment is performed on at least one layer of the multi-layered stack structure. A conductive layer is formed on the multi-layered stack structure.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: July 5, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Guang-Yaw Hwang, Chun-Hsien Lin, Hung-Ling Shih, Jiunn-Hsiung Liao, Zhi-Cheng Lee, Shao-Hua Hsu, Yi-Wen Chen, Cheng-Guo Chen, Jung-Tsung Tseng, Chien-Ting Lin, Tong-Jyun Huang, Jie-Ning Yang, Tsung-Lung Tsai, Po-Jui Liao, Chien-Ming Lai, Ying-Tsung Chen, Cheng-Yu Ma, Wen-Han Hung, Che-Hua Hsu
  • Patent number: 9034102
    Abstract: A method of fabricating a hybrid orientation substrate is described. A silicon substrate with a first orientation having a silicon layer with a second orientation directly thereon is provided, and then a stress layer is formed on the silicon layer. A trench is formed between a first portion and a second portion of the silicon layer through the stress layer and into the substrate. The first portion of the silicon layer is amorphized. A SPE process is performed to recrystallize the amorphized first portion of the silicon layer to be a recrystallized layer with the first orientation. An annealing process is performed at a temperature lower than 1200° C. to convert a surface layer of the second portion of the silicon layer to a strained layer. The trench is filled with an insulating material after the SPE process or the annealing process, and the stress layer is removed.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: May 19, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yao-Tsung Huang, Chien-Ting Lin, Che-Hua Hsu, Guang-Hwa Ma
  • Patent number: 8951855
    Abstract: A manufacturing method for a semiconductor device having a metal gate is provided. First and second gate trenches are respectively formed in first and second semiconductor devices. A work-function metal layer is formed in the first and second gate trenches. A shielding layer is formed on the substrate. A first removing step is performed, so that the remaining shielding layer is at bottom of the second gate trench and fills up the first gate trench. A second removing step is performed, so that the remaining shielding layer is at bottom of the first gate trench to expose the work-function metal layer at sidewall of the first gate trench and in the second gate trench. The work-function metal layer not covered by the remaining shielding layer is removed, so that the remaining work-function metal layer is only at bottom of the first gate trench. The remaining shielding layer is removed.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: February 10, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Chien-Ming Lai, Rai-Min Huang, Tong-Jyun Huang, Che-Hua Hsu, Yi-Wen Chen
  • Publication number: 20140339652
    Abstract: A semiconductor device with oxygen-containing metal gates includes a substrate, a gate dielectric layer and a multi-layered stack structure. The multi-layered stack structure is disposed on the substrate. At least one layer of the multi-layered stack structure includes a work function metal layer. The concentration of oxygen in the side of one layer of the multi-layered stack structure closer to the gate dielectric layer is less than that in the side of one layer of the multi-layered stack structure opposite to the gate dielectric layer.
    Type: Application
    Filed: August 1, 2014
    Publication date: November 20, 2014
    Inventors: Guang-Yaw Hwang, Chun-Hsien Lin, Hung-Ling Shih, Jiunn-Hsiung Liao, Zhi-Cheng Lee, Shao-Hua Hsu, Yi-Wen Chen, Cheng-Guo Chen, Jung-Tsung Tseng, Chien-Ting Lin, Tong-Jyun Huang, Jie-Ning Yang, Tsung-Lung Tsai, Po-Jui Liao, Chien-Ming Lai, Ying-Tsung Chen, Cheng-Yu Ma, Wen-Han Hung, Che-Hua Hsu
  • Patent number: 8816439
    Abstract: A gate structure of a semiconductor device includes a first low resistance conductive layer, a second low resistance conductive layer, and a first type conductive layer disposed between and directly contacting sidewalls of the first low resistance conductive layer and the second low resistance conductive layer.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: August 26, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Hao Yu, Li-Wei Cheng, Che-Hua Hsu, Tian-Fu Chiang, Cheng-Hsien Chou, Chien-Ming Lai, Yi-Wen Chen, Chien-Ting Lin, Guang-Hwa Ma
  • Patent number: 8802524
    Abstract: The present invention provides a method of manufacturing semiconductor device having metal gates. First, a substrate is provided. A first conductive type transistor having a first sacrifice gate and a second conductive type transistor having a second sacrifice gate are disposed on the substrate. The first sacrifice gate is removed to form a first trench. Then, a first metal layer is formed in the first trench. The second sacrifice gate is removed to form a second trench. Next, a second metal layer is formed in the first trench and the second trench. Lastly, a third metal layer is formed on the second metal layer wherein the third metal layer is filled into the first trench and the second trench.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: August 12, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yi-Wei Chen, Hsin-Fu Huang, Tzung-Ying Lee, Min-Chuan Tsai, Chan-Lon Yang, Chun-Yuan Wu, Teng-Chun Tsai, Guang-Yaw Hwang, Chia-Lin Hsu, Jie-Ning Yang, Cheng-Guo Chen, Jung-Tsung Tseng, Zhi-Cheng Lee, Hung-Ling Shih, Po-Cheng Huang, Yi-Wen Chen, Che-Hua Hsu
  • Patent number: 8685811
    Abstract: A method for manufacturing a CMOS device includes providing a substrate having a first active region and a second active region defined thereon, forming a first conductive type transistor and a second conductive type transistor respectively in the first and the second active regions, performing a salicide process, forming an ILD layer, performing a first etching process to remove a first gate of the first conductive type transistor and to form an opening while a high-K gate dielectric layer is exposed in a bottom of the opening, and forming at least a first metal layer in the opening.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: April 1, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chien-Ting Lin, Li-Wei Cheng, Che-Hua Hsu, Guang-Hwa Ma, Chin-Sheng Yang
  • Publication number: 20130280900
    Abstract: A manufacturing method for a semiconductor device having a metal gate is provided. First and second gate trenches are respectively formed in first and second semiconductor devices. A work-function metal layer is formed in the first and second gate trenches. A shielding layer is formed on the substrate. A first removing step is performed, so that the remaining shielding layer is at bottom of the second gate trench and fills up the first gate trench. A second removing step is performed, so that the remaining shielding layer is at bottom of the first gate trench to expose the work-function metal layer at sidewall of the first gate trench and in the second gate trench. The work-function metal layer not covered by the remaining shielding layer is removed, so that the remaining work-function metal layer is only at bottom of the first gate trench. The remaining shielding layer is removed.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Ming Lai, Rai-Min Huang, Tong-Jyun Huang, Che-Hua Hsu, Yi-Wen Chen
  • Patent number: 8492259
    Abstract: A method of forming metal gate structure includes providing a substrate; forming a gate dielectric layer, a material layer and a polysilicon layer stacked on the substrate; forming a first mask layer, a second mask layer and a patterned photoresist on the polysilicon layer; removing portions of the second mask layer and the first mask layer to form a hard mask by utilizing the patterned photoresist as an etching mask; removing the patterned photoresist, and next utilizing the hard mask as an etching mask to remove parts of the polysilicon layer and parts of the material layer. Thus, a gate stack is formed. Since the patterned photoresist is removed before forming the gate stack, the gate stack is protected from damages of the photoresist-removing process. The photoresist-removing process does not attack the sidewalls of the gate stack, so a bird's beak effect of the gate dielectric layer is prevent.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: July 23, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Che-Hua Hsu, Shao-Hua Hsu, Zhi-Cheng Lee, Cheng-Guo Chen
  • Patent number: 8486842
    Abstract: A method of selectively removing a patterned hard mask is described. A substrate with a patterned target layer thereon is provided, wherein the patterned target layer includes a first target pattern and at least one second target pattern, and the patterned hard mask includes a first mask pattern on the first target pattern and a second mask pattern on the at least one second target pattern. A first photoresist layer is formed covering the first mask pattern. The sidewall of the at least one second target pattern is covered by a second photoresist layer. The second mask pattern is removed using the first photoresist layer and the second photoresist layer as a mask.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: July 16, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Che-Hua Hsu, Shao-Hua Hsu, Zhi-Cheng Lee, Cheng-Guo Chen
  • Patent number: 8404535
    Abstract: A method for fabricating metal gate transistor is disclosed. First, a substrate having a first transistor region and a second transistor region is provided. Next, a stacked film is formed on the substrate, in which the stacked film includes at least one high-k dielectric layer and a first metal layer. The stacked film is patterned to form a plurality of gates in the first transistor region and the second transistor region, a dielectric layer is formed on the gates, and a portion of the dielectric layer is planarized until reaching the top of each gates. The first metal layer is removed from the gate of the second transistor region, and a second metal layer is formed over the surface of the dielectric layer and each gate for forming a plurality of metal gates in the first transistor region and the second transistor region.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: March 26, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Hao Yu, Li-Wei Cheng, Che-Hua Hsu, Cheng-Hsien Chou, Tian-Fu Chiang, Chien-Ming Lai, Yi-Wen Chen, Jung-Tsung Tseng, Chien-Ting Lin, Guang-Hwa Ma
  • Patent number: 8349682
    Abstract: An integrated method includes fabricating a metal gate transistor and a polysilicon resistor structure. A photoresistor layer is defined by an SAB photo mask and covers a part of a high resistance structure of the polysilicon resistor. When the dummy gate of the transistor is etched, the part of the high resistance structure is protected by the patterned photoresistor layer. The polysilicon resistor is formed simultaneously with the transistor. Furthermore, the polysilicon resistor still has sufficient resistance and includes two metal structures for electrical connection.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: January 8, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Cheng-Wen Fan, Kun-Szu Tseng, Che-Hua Hsu, Chih-Yu Tseng, Victor-Chiang Liang
  • Publication number: 20120322218
    Abstract: A method for fabricating a semiconductor device includes the following steps. Firstly, a dummy gate structure having a dummy gate electrode layer is provided. Then, the dummy gate electrode layer is removed to form an opening in the dummy gate structure, thereby exposing an underlying layer beneath the dummy gate electrode layer. Then, an ammonium hydroxide treatment process is performed to treat the dummy gate structure. Afterwards, a metal material is filled into the opening.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 20, 2012
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Ming LAI, Yi-Wen Chen, Zhi-Cheng Lee, Tong-Jyun Huang, Che-Hua Hsu, Kun-Hsien Lin, Tzung-Ying Lee, Chi-Mao Hsu, Hsin-Fu Huang, Chin-Fu Lin