Patents by Inventor Che-Liang Tsai
Che-Liang Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250049316Abstract: An optical biometer includes a light-source module, a light-splitting module, a reference-arm, a sensing-arm and a sensing module. The light-source module emits incident-light. The light-splitting module, disposed corresponding to light-source module, divides the incident-light into reference light and sensing light. The reference-arm, disposed corresponding to light-splitting module, generates a first reflected-light according to the reference light. The sensing-arm, disposed corresponding to the light-splitting module, emits the sensing light to the eye and receives a second reflected-light from the eye. The sensing module generates a sensing result according to the first reflected-light and second reflected-light. In a first mode, the sensing light is emitted to a first position of the eye. In a second mode, the sensing light is emitted to a second position of the eye.Type: ApplicationFiled: August 2, 2024Publication date: February 13, 2025Inventors: Yen-Jen CHANG, Tung-Yu LEE, Chun-Nan LIN, Che-Liang TSAI, Sung-Yang WEI, Hsuan-Hao CHAO, William WANG, Ching Hung LIN
-
Publication number: 20250049319Abstract: An optical detection system integrating tonometer and autorefractor includes first and second optical modules. The first optical module includes a light source, first and second lens sets, a reflector, a first light-splitter and a sensor. The first lens set and reflector are disposed corresponding to light source. The first light-splitter is disposed corresponding to the reflector, second lens set and sensor. The second optical module includes a second light-splitter and first to third optical elements. The incident light emitted by the light source passes through the first lens, reflected by the reflector, passes through the first light-splitter, reflected by the second light-splitter, passes through the first to third optical elements and emitted to an eye. A sensing light from the eye passes through the third to first optical elements, reflected by the second light-splitter and first light-splitter, passes through the second lens set and emitted to the sensor.Type: ApplicationFiled: August 5, 2024Publication date: February 13, 2025Inventors: Che-Liang TSAI, Yen-Jen CHANG, Chung-Ping CHUANG, Tung-Yu LEE, Sung-Yang WEI, William WANG
-
Publication number: 20240324872Abstract: An optical system applied to an optical biometer is disclosed. The optical system includes a light source, first and second switchable reflectors, and first and second fixed reflectors. The first switchable reflector is disposed corresponding to the light source. The second switchable reflector is disposed corresponding to an eye. In a first mode, the first and second switchable reflectors are switched to a first state, and the incident light emitted by the light source is reflected by the first fixed reflector along a first optical path and then emitted to a first position of the eye. In a second mode, the first and second switchable reflectors are switched to a second state, and the incident light is sequentially reflected by the first switchable reflector, the second fixed reflector and the second switchable reflector along a second optical path and then emitted to a second position of the eye.Type: ApplicationFiled: March 28, 2024Publication date: October 3, 2024Inventors: Meng-Shin YEN, Yen-Jen CHANG, Che-Liang TSAI, Chun-Nan LIN, Sung-Yang WEI, Hsuan-Hao CHAO, Chung-Ping CHUANG, William WANG, Tung-Yu LEE, Chung-Cheng CHOU
-
Publication number: 20240023807Abstract: An optical biometer including a light source, a first-stage coupler, a first and a second second-stage coupler, a first and a second optical path difference generator, a first and a second optical component set, a first and a second detection device is disclosed. The first-stage coupler receives an incident light from the light source and emits first and second first-stage lights. The first second-stage coupler receives the first first-stage light and emits first and second second-stage lights. The second second-stage coupler receives the second first-stage light and emits third and fourth second-stage lights. The first/second optical path difference generator generates the first/fourth second-stage light with the first/second optical path difference. The first/second optical component set emits the second/third second-stage light to a first/second position of an eye and receives a first/second reflected light. The first/second detector receives a first/second detection light.Type: ApplicationFiled: July 13, 2023Publication date: January 25, 2024Inventors: Che-Liang TSAI, William WANG, Chung-Ping CHUANG, Sung-Yang WEI, Hsuan-Hao CHAO, Chung-Cheng CHOU
-
Publication number: 20230404403Abstract: An optical detection system capable of providing auxiliary light source projection including an optical detection apparatus and an optical module is disclosed. The optical module and the optical detection apparatus are combined with each other in a specific combination type. The specific combination type can be a direct integration type, a bending type, a foldable type, a low height type or an attachable type. The optical module is used to provide additional auxiliary light source projection to improve a condition for testee to gaze and observe a pattern. The optical module includes a light source, a lens set and a reflecting mirror. The light source can be designed as different types of multiple light sources, such as an opposite-direction type multiple light sources or a ring type multiple light sources, to provide a uniform light source.Type: ApplicationFiled: May 9, 2023Publication date: December 21, 2023Applicant: Crystalvue Medical CorporationInventors: Yen-Jen CHANG, William WANG, Che-Liang TSAI
-
Patent number: 11181421Abstract: A spectrometer is disclosed. The spectrometer includes a fiber input, a collimator lens, a rotating shaft, a grating, a focal lens and a focal plane which have arranged in order. A broadband incident light of the fiber input becomes a first parallel beam through the collimator lens and separated by the grating into multiple parallel beams of different wavelengths and then focused by the focal lens to emit an output beams to an imaging position on the focal plane. The spectrometer can rotate the collimator lens and fiber input to change the imaging position on the focal plane.Type: GrantFiled: June 3, 2020Date of Patent: November 23, 2021Assignee: Crystalvue Medical CorporationInventors: William Wang, Che-Liang Tsai, Chung-Cheng Chou
-
Publication number: 20210003446Abstract: A spectrometer is disclosed. The spectrometer includes a fiber input, a collimator lens, a rotating shaft, a grating, a focal lens and a focal plane which have arranged in order. A broadband incident light of the fiber input becomes a first parallel beam through the collimator lens and separated by the grating into multiple parallel beams of different wavelengths and then focused by the focal lens to emit an output beams to an imaging position on the focal plane. The spectrometer can rotate the collimator lens and fiber input to change the imaging position on the focal plane.Type: ApplicationFiled: June 3, 2020Publication date: January 7, 2021Inventors: William WANG, Che-Liang TSAI, Chung-Cheng CHOU
-
Patent number: 8781190Abstract: An image-recognition assisting method includes the steps of using an examination instrument to generate an image having a split-image area formed thereon; setting a region-of-interest (ROI) around the split-image area of the generated image; performing a pixel luminance addition processing on the ROI, so that all pixels in the ROI have increased luminance contrast; and performing a contrast correction on the ROI having increased luminance contrast, so that the luminance contrast between the split-image area and the area surrounding the split-image area in the ROI is further increased. The image-recognition assisting method optimizes the image generated by the conventional ophthalmic examination instrument, such as a fundus camera, to increase the sharpness and the luminance contrast of the image output by the fundus camera, so that an examiner can easily recognize two offset rectangular image parts in the split-image area and align them with each other to focus the examination instrument.Type: GrantFiled: August 13, 2012Date of Patent: July 15, 2014Assignee: Crystalvue Medical CorporationInventors: Chun Nan Lin, Chung Ping Chuang, Che Liang Tsai
-
Patent number: 8777411Abstract: A fundus examination device aiding in gaze fixation and image focusing includes a light projecting device for projecting an examination light to illuminate an examinee's fundus; an illuminating system for transmitting the examination light to the examinee's eye and receiving a fundus image; an imaging system for showing the fundus image; and a focusing and gaze-fixation device located in the illuminating system and including a focus mask formed in a focusing zone, on which the examinee's eye focuses. The focus mask includes a split image screen surrounded by a light-penetrable structure, and gaze fixation devices for forming gaze-fixation images at examinee's eye focusing positions within the focusing zone, such that the split image screen and the gaze-fixation images are located at different focal positions corresponding to the examinee's eye curvature. Therefore, when a split image focusing is completed, the gaze-fixation images are also located at clearly recognizable focal positions.Type: GrantFiled: December 27, 2012Date of Patent: July 15, 2014Assignee: Crystalvue Medical CorporationInventors: Che Liang Tsai, Chung Ping Chuang, Yen Jen Chang
-
Publication number: 20140044326Abstract: An image-recognition assisting method includes the steps of using an examination instrument to generate an image having a split-image area formed thereon; setting a region-of-interest (ROI) around the split-image area of the generated image; performing a pixel luminance addition processing on the ROI, so that all pixels in the ROI have increased luminance contrast; and performing a contrast correction on the ROI having increased luminance contrast, so that the luminance contrast between the split-image area and the area surrounding the split-image area in the ROI is further increased. The image-recognition assisting method optimizes the image generated by the conventional ophthalmic examination instrument, such as a fundus camera, to increase the sharpness and the luminance contrast of the image output by the fundus camera, so that an examiner can easily recognize two offset rectangular image parts in the split-image area and align them with each other to focus the examination instrument.Type: ApplicationFiled: August 13, 2012Publication date: February 13, 2014Applicant: CRYSTALVUE MEDICAL CORPORATIONInventors: Chun Nan LIN, Chung Ping Chuang, Che Liang Tsai
-
Publication number: 20130286346Abstract: A fundus examination device aiding in gaze fixation and image focusing includes a light projecting device for projecting an examination light to illuminate an examinee's fundus; an illuminating system for transmitting the examination light to the examinee's eye and receiving a fundus image; an imaging system for showing the fundus image; and a focusing and gaze-fixation device located in the illuminating system and including a focus mask formed in a focusing zone, on which the examinee's eye focuses. The focus mask includes a split image screen surrounded by a light-penetrable structure, and gaze fixation devices for forming gaze-fixation images at examinee's eye focusing positions within the focusing zone, such that the split image screen and the gaze-fixation images are located at different focal positions corresponding to the examinee's eye curvature. Therefore, when a split image focusing is completed, the gaze-fixation images are also located at clearly recognizable focal positions.Type: ApplicationFiled: December 27, 2012Publication date: October 31, 2013Applicant: CRYSTALVUE MEDICAL CORPORATIONInventors: Che Liang TSAI, Chung Ping CHUANG, Yen Jen CHANG
-
Patent number: 8564784Abstract: A large area optical diagnosis apparatus and the operating method thereof are disclosed. The large area optical diagnosis apparatus includes a light source, a light path structure, and a sensing module. The light source is used to at least emit a coherent light. The light path structure includes a plurality of optical units used for dividing the coherent light into a plurality of first incident lights and a plurality of second incident lights. The plurality of first incident lights are emitted toward an object to be diagnosed and the plurality of second incident lights are emitted toward a reference end. The object to be diagnosed and the reference end reflect the plurality of first incident lights and the plurality of second incident lights to be a plurality of reflected lights. The sensing module senses the plurality of reflected lights to generate a sensing result related to the object to be diagnosed.Type: GrantFiled: August 5, 2011Date of Patent: October 22, 2013Assignee: Crystalvue Medical CorporationInventors: William Wang, Chung-Cheng Chou, Che-Liang Tsai
-
Publication number: 20130250236Abstract: A gaze-fixation aiding and image focusing device for a fundus camera includes an illuminating system for projecting an examination light to illuminate an examinee's fundus; an aging system for receiving a fundus image and light reflected from the examinee's eye and forming images of the reflected light and the fundus on a display; a focusing device having a split image screen located in the illuminating system to work with an adjusting means located in the imaging system for split image focusing; and a gaze fixation device having a gaze fixation surface formed in the illuminating system and a plurality of fixation points provided on the gaze fixation surface to form a contrast with the examination light. With these arrangements, the fundus camera can have largely simplified optical path structure, and the fixation points are independently controllable to light for the examinee to gaze into particular directions.Type: ApplicationFiled: December 20, 2012Publication date: September 26, 2013Applicant: CRYSTALVUE MEDICAL CORPORATIONInventors: Che Liang TSAI, Chung Ping CHUANG, Yen Jen CHANG
-
Publication number: 20130107212Abstract: A simplified and cost-effective three-axis positioning device and method for ophthalmic examination instrument is disclosed. The three-axis positioning device includes an illuminating optical path for projecting light to illuminate an examinee's fundus; an imaging optical path including an objective lens for receiving the examinee's fundus image and light reflected from the examinee's cornea and eye-lens; a software-based alignment module for determining intensity and position of the reflected light on the fundus image to generate auxiliary positioning information; and an image displaying unit for showing the fundus image, the reflected light, and the auxiliary positioning information. From the intensity and position of the reflected light, x-, y- and z-axis relative positions between the examinee's pupil and the objective lens are obtained. An examiner adjusts the relative positions in three axes until they fall within an allowable deviation range, and a clear fundus image can be obtained.Type: ApplicationFiled: August 13, 2012Publication date: May 2, 2013Applicant: CRYSTALVUE MEDICAL CORPORATIONInventors: Chun Nan LIN, Chung Ping CHUANG, Che Liang TSAI, Kun Cheng HSIEH
-
Publication number: 20120033211Abstract: A large area optical diagnosis apparatus and the operating method thereof are disclosed. The large area optical diagnosis apparatus includes a light source, a light path structure, and a sensing module. The light source is used to at least emit a coherent light. The light path structure includes a plurality of optical units used for dividing the coherent light into a plurality of first incident lights and a plurality of second incident lights. The plurality of first incident lights are emitted toward an object to be diagnosed and the plurality of second incident lights are emitted toward a reference end. The object to be diagnosed and the reference end reflect the plurality of first incident lights and the plurality of second incident lights to be a plurality of reflected lights. The sensing module senses the plurality of reflected lights to generate a sensing result related to the object to be diagnosed.Type: ApplicationFiled: August 5, 2011Publication date: February 9, 2012Inventors: William Wang, Chung-Cheng Chou, Che-Liang Tsai
-
Publication number: 20090273831Abstract: A light module is provided. The light module applied to a dark field microscope is used for illuminating an object. The light module includes a light beam, a reflection component and a condensing component. The light beam has several lights. The reflection component is used for converting the lights radiating along a beginning direction to a circular beam substantially radiating along the beginning direction. The circular beam passes through the condensing component and is focused on the object. A part of the circular beam passing through the condensing component is scattered by the object.Type: ApplicationFiled: April 30, 2009Publication date: November 5, 2009Applicants: RAYDIUM SEMICONDUCTOR CORPORATIONInventors: Long Hsu, Kuang-Lung Huang, William Wang, Cheng-Hsien Liu, Yuh-Shyong Yang, Che-Liang Tsai, Chung-Cheng Chou