Patents by Inventor Che-Yu Chang

Che-Yu Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240099154
    Abstract: A magnetoresistive random access memory (MRAM) device includes a first array region and a second array region on a substrate, a first magnetic tunneling junction (MTJ) on the first array region, a first top electrode on the first MTJ, a second MTJ on the second array region, and a second top electrode on the second MTJ. Preferably, the first top electrode and the second top electrode include different nitrogen to titanium (N/Ti) ratios.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Applicant: UNITED MICROELECTRONICS CORP
    Inventors: Hui-Lin Wang, Si-Han Tsai, Dong-Ming Wu, Chen-Yi Weng, Ching-Hua Hsu, Ju-Chun Fan, Yi-Yu Lin, Che-Wei Chang, Po-Kai Hsu, Jing-Yin Jhang
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 11917923
    Abstract: A magnetoresistive random access memory (MRAM) structure, including a substrate and multiple MRAM cells on the substrate, wherein the MRAM cells are arranged in a memory region adjacent to a logic region. An ultra low-k (ULK) layer covers the MRAM cells, wherein the surface portion of ultra low-k layer is doped with fluorine, and dents are formed on the surface of ultra low-k layer at the boundaries between the memory region and the logic region.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: February 27, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Ching-Hua Hsu, Si-Han Tsai, Shun-Yu Huang, Chen-Yi Weng, Ju-Chun Fan, Che-Wei Chang, Yi-Yu Lin, Po-Kai Hsu, Jing-Yin Jhang, Ya-Jyuan Hung
  • Patent number: 11831244
    Abstract: A resonant converter having a pre-conduction mechanism for realizing a wide output voltage range is provided. The resonant converter includes a first circuit and a second circuit. The first circuit includes a plurality of primary-side switches. The plurality of primary-side switches includes a first high-side switch, a second high-side switch, a first low-side switch and a second low-side switch. The second circuit includes a plurality of secondary-side switches. The plurality of secondary-side switches includes a third high-side switch, a fourth high-side switch, a third low-side switch and a fourth low-side switch. When the second low-side switch and the first low-side switch are turned on and a current time reaches a preset on time, the fourth high-side switch and the third low-side switch are turned on.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: November 28, 2023
    Assignee: NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Jing-Yuan Lin, Hsuan-Yu Yueh, Yi-Feng Lin, Che-Yu Chang
  • Publication number: 20230155511
    Abstract: A resonant converter having a pre-conduction mechanism for realizing a wide output voltage range is provided. The resonant converter includes a first circuit and a second circuit. The first circuit includes a plurality of primary-side switches. The plurality of primary-side switches includes a first high-side switch, a second high-side switch, a first low-side switch and a second low-side switch. The second circuit includes a plurality of secondary-side switches. The plurality of secondary-side switches includes a third high-side switch, a fourth high-side switch, a third low-side switch and a fourth low-side switch. When the second low-side switch and the first low-side switch are turned on and a current time reaches a preset on time, the fourth high-side switch and the third low-side switch are turned on.
    Type: Application
    Filed: February 28, 2022
    Publication date: May 18, 2023
    Inventors: JING-YUAN LIN, HSUAN-YU YUEH, Yi-Feng Lin, Che-Yu Chang
  • Publication number: 20130240735
    Abstract: In a method for detecting objects by utilizing near infrared (NIR) light and far infrared (FIR) light, an NIR environment image and an FIR environment image generated by photographing a current environment with the NIR light and the FIR light respectively are received. The NIR and FIR environment images are respectively analyzed to obtain several NIR-environment-image analysis values and FIR-environment-image analysis values. A current-environment category is generated according the NIR-environment-image analysis values and the FIR-environment-image analysis values. First object detection information and second object detection information are obtained by respectively performing object-detection onto the NIR environment image and the FIR environment image. Information of at least one detected object in the current environment is obtained according to the current-environment category, the first object detection information and the second object detection information.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 19, 2013
    Applicant: INSTITUTE FOR INFORMATION INDUSTRY
    Inventors: Hsu-Chun Yen, Che-Yi Lin, Kai-Jun Wang, Chun-Yeh Liao, Che-Yu Chang, Sheng-Yang Wu
  • Publication number: 20060133511
    Abstract: This invention provides a method to speed up mode decision in video coding standards. It is based on the characteristics of mode distribution and the relationship among the modes of neighboring blocks. It compares the main steps of checking SKIP mode, checking if neighboring blocks have a same mode, checking the best mode, and checking each mode in all inter modes then selecting the best one of these modes. Compared to the H.264 reference software full search method, the simulation result shows that this method can save up to 66.81% of the total encoding time with a slight increase in bit rate and a negligible PSNR drop.
    Type: Application
    Filed: August 23, 2005
    Publication date: June 22, 2006
    Inventors: Homer Chen, Che-Yu Chang, Chia-Ho Pan