Patents by Inventor Chel-jong Choi

Chel-jong Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7981735
    Abstract: Provided are a Schottky barrier tunnel transistor and a method of manufacturing the same that are capable of minimizing leakage current caused by damage to a gate sidewall of the Schottky barrier tunnel transistor using a Schottky tunnel barrier naturally formed at a semiconductor-metal junction as a tunnel barrier. The method includes the steps of: forming a semiconductor channel layer on an insulating substrate; forming a dummy gate on the semiconductor channel layer; forming a source and a drain at both sides of the dummy gate on the insulating substrate; removing the dummy gate; forming an insulating layer on a sidewall from which the dummy gate is removed; and forming an actual gate in a space from which the dummy gate is removed. In manufacturing the Schottky barrier tunnel transistor using the dummy gate, it is possible to form a high-k dielectric gate insulating layer and a metal gate, and stable characteristics in silicidation of the metal layer having very strong reactivity can be obtained.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: July 19, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yark Yeon Kim, Seong Jae Lee, Moon Gyu Jang, Chel Jong Choi, Myung Sim Jun, Byoung Chul Park
  • Publication number: 20110068326
    Abstract: A Schottky barrier tunnel transistor includes a gate electrode, and source and drain regions. The gate electrode is formed over a channel region of a substrate to form a Schottky junction with the substrate. The source and drain regions are formed in the substrate exposed on both sides of the gate electrode.
    Type: Application
    Filed: November 30, 2010
    Publication date: March 24, 2011
    Inventors: Moon-Gyu Jang, Yark-Yeon Kim, Chel-Jong Choi, Myung-Sim Jun, Tae-Youb Kim, Seong-Jae Lee
  • Patent number: 7863121
    Abstract: A Schottky barrier tunnel transistor includes a gate electrode, and source and drain regions. The gate electrode is formed over a channel region of a substrate to form a Schottky junction with the substrate. The source and drain regions are formed in the substrate exposed on both sides of the gate electrode.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: January 4, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Moon-Gyu Jang, Yark-Yeon Kim, Chel-Jong Choi, Myung-Sim Jun, Tae-Youb Kim, Seong-Jae Lee
  • Patent number: 7745316
    Abstract: Provided is a method for fabricating a Schottky barrier tunnel transistor (SBTT) that can fundamentally prevent the generation of a gate leakage current caused by damage of spacers formed on both sidewalls of a gate electrode. The method for fabricating a Schottky barrier tunnel transistor, which includes: a) forming a silicon pattern and a sacrificial pattern on a buried oxide layer supported by a support substrate; b) forming a source/drain region on the buried oxide layer exposed on both sides of the silicon pattern, the source/drain region being formed of a metal layer and being in contact with both sidewalls of the silicon pattern; c) removing the sacrificial pattern to expose the top surface of the silicon pattern; and d) forming a gate insulating layer and a gate electrode on the exposed silicon pattern.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 29, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yark-Yeon Kim, Seong-Jae Lee, Moon-Gyu Jang, Tae-Youb Kim, Chel-Jong Choi, Myung-Sim Jun, Byoung-Chul Park
  • Patent number: 7713826
    Abstract: Provided is a method of manufacturing a semiconductor device including a high-k dielectric thin layer formed using an interfacial reaction. The method includes the steps of: forming an oxide layer on a silicon substrate; depositing a metal layer on the oxide layer to form a metal silicate layer using an interfacial reaction between the oxide layer and the metal layer; forming a metal gate by etching the metal silicate layer and the metal layer; and forming a lightly doped drain (LDD) region and source and drain regions in the silicon substrate after forming the metal gate. In this method, a semiconductor device having high quality and performance can be manufactured by a simpler process at lower cost.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: May 11, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chel Jong Choi, Moon Gyu Jang, Yark Yeon Kim, Myung Sim Jun, Tae Youb Kim
  • Patent number: 7605068
    Abstract: Provided is a semiconductor device and a manufacturing method thereof. The method includes the steps of: forming a thin film transistor including a substrate having a semiconductor layer and silicon, a gate insulation layer formed on the semiconductor layer, a gate electrode formed on the gate insulation layer, and source and drain regions formed in the semiconductor layer; forming a first metal layer on the substrate having the semiconductor layer and the gate electrode; forming a second metal layer on the first metal layer; forming a third metal layer on the second metal layer; forming a nitride layer on the third metal layer; and annealing the substrate having the nitride layer, and forming a silicide layer on the gate electrode and the source and drain regions.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: October 20, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chel Jong Choi, Yong Jin Kim, Hi Deok Lee
  • Publication number: 20090215232
    Abstract: Provided are a Schottky barrier tunnel transistor and a method of manufacturing the same that are capable of minimizing leakage current caused by damage to a gate sidewall of the Schottky barrier tunnel transistor using a Schottky tunnel barrier naturally formed at a semiconductor-metal junction as a tunnel barrier. The method includes the steps of: forming a semiconductor channel layer on an insulating substrate; forming a dummy gate on the semiconductor channel layer; forming a source and a drain at both sides of the dummy gate on the insulating substrate; removing the dummy gate; forming an insulating layer on a sidewall from which the dummy gate is removed; and forming an actual gate in a space from which the dummy gate is removed. In manufacturing the Schottky barrier tunnel transistor using the dummy gate, it is possible to form a high-k dielectric gate insulating layer and a metal gate, and stable characteristics in silicidation of the metal layer having very strong reactivity can be obtained.
    Type: Application
    Filed: May 4, 2009
    Publication date: August 27, 2009
    Inventors: Yark Yeon KIM, Seong Jae LEE, Moon Gyu JANG, Chel Jong CHOI, Myung Sim JUN, Byoung Chul PARK
  • Patent number: 7569846
    Abstract: A phase-change random access memory (PRAM) device including a plurality of nanowires and a method of manufacturing the same include: a lower structure including a plurality of contact plugs; the nanowires extending into the contact plugs from surfaces defining a respective terminal end of the contact plugs; and a phase-change layer formed on top of the nanowires. Therefore, a reset or a set current consumed by the PRAM device is significantly reduced.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: August 4, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chel-jong Choi, Jong-bong Park, Tae-gyu Kim, Dong-woo Lee
  • Patent number: 7545000
    Abstract: Provided are a Schottky barrier tunnel transistor and a method of manufacturing the same that are capable of minimizing leakage current caused by damage to a gate sidewall of the Schottky barrier tunnel transistor using a Schottky tunnel barrier naturally formed at a semiconductor-metal junction as a tunnel barrier. The method includes the steps of: forming a semiconductor channel layer on an insulating substrate; forming a dummy gate on the semiconductor channel layer; forming a source and a drain at both sides of the dummy gate on the insulating substrate; removing the dummy gate; forming an insulating layer on a sidewall from which the dummy gate is removed; and forming an actual gate in a space from which the dummy gate is removed. In manufacturing the Schottky barrier tunnel transistor using the dummy gate, it is possible to form a high-k dielectric gate insulating layer and a metal gate, and stable characteristics in silicidation of the metal layer having very strong reactivity can be obtained.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: June 9, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yark Yeon Kim, Seong Jae Lee, Moon Gyu Jang, Chel Jong Choi, Myung Sim Jun, Byoung Chul Park
  • Publication number: 20080299736
    Abstract: Provided is a method of manufacturing a semiconductor device including a high-k dielectric thin layer formed using an interfacial reaction. The method includes the steps of: forming an oxide layer on a silicon substrate; depositing a metal layer on the oxide layer to form a metal silicate layer using an interfacial reaction between the oxide layer and the metal layer; forming a metal gate by etching the metal silicate layer and the metal layer; and forming a lightly doped drain (LDD) region and source and drain regions in the silicon substrate after forming the metal gate. In this method, a semiconductor device having high quality and performance can be manufactured by a simpler process at lower cost.
    Type: Application
    Filed: March 11, 2008
    Publication date: December 4, 2008
    Applicant: Electronics and Telecommunications research Institute
    Inventors: Chel Jong Choi, Moon Gyu Jang, Yark Yeon Kim, Myung Sim Jun, Tae Youb Kim
  • Patent number: 7449402
    Abstract: Provided is a method of fabricating a semiconductor device, the method including: forming an insulating layer on a single crystal substrate; etching the insulating layer in a predetermined pattern to expose the surface of the single crystal substrate; depositing an amorphous material on the insulating layer and the exposed surface of the single crystal substrate; and completely melting the amorphous material on the single crystal substrate and the insulating layer using laser annealing and crystallizing the melted amorphous material. The semiconductor device has a single crystalline silicon gate on the insulating layer.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: November 11, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Soo-bong Heo, Chel-jong Choi
  • Publication number: 20080128760
    Abstract: Provided is a Schottky barrier nanowire field effect transistor, which has source/drain electrodes formed of metal silicide and a channel formed of a nanowire, and a method for fabricating the same. The Schottky barrier nanowire field effect transistor includes: a channel suspended over a substrate and including a nanowire; metal silicide source/drain electrodes electrically connected to both ends of the channel over the substrate; a gate electrode disposed to surround the channel; and a gate insulation layer disposed between the channel and the gate electrode.
    Type: Application
    Filed: November 30, 2007
    Publication date: June 5, 2008
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Myungsim Jun, Moon-Gyu Jang, Yark-Yeon Kim, Chel-Jong Choi, Taeyoub Kim, Seongjae Lee
  • Publication number: 20080128786
    Abstract: Provided are a high density semiconductor memory device capable of precisely reading data by suppressing the occurrence of a leakage current due to the high-integration of the semiconductor memory device, and a method for manufacturing the semiconductor memory device. The high density semiconductor memory device includes: source and drain electrodes disposed over a substrate, and forming a Schottky junction with a channel region; and a floating gate disposed over the substrate of the channel region, and configured with a plurality of nanodots. The nanodots may be formed of a silicon compound or any material that can be charged.
    Type: Application
    Filed: December 4, 2007
    Publication date: June 5, 2008
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Taeyoub KIM, Myungsim JUN, Yark-Yeon KIM, Moon-Gyu JANG, Chel-Jong CHOI, Seong-Jae LEE, Byoungchul PARK
  • Publication number: 20080132049
    Abstract: Provided is a method for fabricating a Schottky barrier tunnel transistor (SBTT) that can fundamentally prevent the generation of a gate leakage current caused by damage of spacers formed on both sidewalls of a gate electrode. The method for fabricating a Schottky barrier tunnel transistor, which includes: a) forming a silicon pattern and a sacrificial pattern on a buried oxide layer supported by a support substrate; b) forming a source/drain region on the buried oxide layer exposed on both sides of the silicon pattern, the source/drain region being formed of a metal layer and being in contact with both sidewalls of the silicon pattern; c) removing the sacrificial pattern to expose the top surface of the silicon pattern; and d) forming a gate insulating layer and a gate electrode on the exposed silicon pattern.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 5, 2008
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Yark-Yeon KIM, Seong-Jae Lee, Moon-Gyu Jang, Tae-Youb Kim, Chel-Jong Choi, Myung-Sim Jun, Byoung-Chul Park
  • Publication number: 20080121868
    Abstract: A Schottky barrier tunnel transistor includes a gate electrode, and source and drain regions. The gate electrode is formed over a channel region of a substrate to form a Schottky junction with the substrate. The source and drain regions are formed in the substrate exposed on both sides of the gate electrode.
    Type: Application
    Filed: May 8, 2007
    Publication date: May 29, 2008
    Inventors: Moon-Gyu Jang, Yark-Yeon Kim, Chel-Jong Choi, Myung-Sim Jun, Tae-Youb Kim, Seong-Jae Lee
  • Publication number: 20080124854
    Abstract: A method for fabricating a semiconductor device includes forming a gate insulation layer over a substrate, forming a conductive compound containing layer over the gate insulation layer, etching the conductive compound containing layer and the gate insulation layer to form a gate structure, forming a metal layer over the resultant structure obtained after the etching, and letting the metal layer to react with silicon from the substrate to form source and drain regions comprising a metal silicide layer over the substrate exposed on both sides of the gate structure, wherein the conductive compound containing layer does not react with the metal layer.
    Type: Application
    Filed: May 7, 2007
    Publication date: May 29, 2008
    Inventors: Chel-Jong CHOI, Moon-Gyu JANG, Yark-Yeon KIM, Tae-Youb KIM, Myung-Sim JUN, Seong-Jae LEE
  • Patent number: 7279422
    Abstract: Provided is a semiconductor device having a suicide thin film with thermal stability and a method of manufacturing the same. The semiconductor device includes a silicon substrate containing Si a gate oxide film formed on the silicon substrate, a gate electrode containing Si formed on the gate oxide film, a spacer formed on side walls of the gate oxide film and the gate electrode, a LDD region formed in the silicon substrate under the spacer, a source/drain region formed in the silicon substrate, a NiSi thin film formed on the source/drain region and the gate electrode by reacting a Ni film with the source/drain region and the gate electrode; and a nitride film formed on the NiSi thin film formed by surface treating the nickel film using Ar plasma and reacting the Ni film with nitrogen. The, a semiconductor device having the NiSi thin film has a low sheet resistance and high thermal stability can be obtained.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: October 9, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chel-jong Choi
  • Publication number: 20070012986
    Abstract: a phase-change random access memory (PRAM) device including a plurality of nanowires and a method of manufacturing the same include: a lower structure including a plurality of contact plugs; the nanowires extending into the contact plugs from surfaces defining a respective terminal end of the contact plugs; and a phase-change layer formed on top of the nanowires. Therefore, a reset or a set current consumed by the PRAM device is significantly reduced.
    Type: Application
    Filed: May 8, 2006
    Publication date: January 18, 2007
    Inventors: Chel-jong Choi, Jong-bong Park, Tae-gyu Kim, Dong-woo Lee
  • Patent number: 7153770
    Abstract: A semiconductor device comprising a metal silicide film with uniform surface morphology and interface morphology and a method of manufacturing the same are provided. The metal silicide film of the semiconductor device exhibits low sheet resistance and excellent thermal stability. Therefore, by using the semiconductor device fabrication method, high performance, high quality semiconductor devices can be manufactured.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: December 26, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chel-jong Choi
  • Publication number: 20060286787
    Abstract: A semiconductor device comprising a metal silicide film with uniform surface morphology and interface morphology and a method of manufacturing the same are provided. The metal silicide film of the semiconductor device exhibits low sheet resistance and excellent thermal stability. Therefore, by using the semiconductor device fabrication method, high performance, high quality semiconductor devices can be manufactured.
    Type: Application
    Filed: August 24, 2006
    Publication date: December 21, 2006
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Chel-Jong Choi